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Abstract

The use of linear phase Gabor transform wavelets is demonstrated as a robust analysis technique capable of
making explicit many elements of human rhythm perception behaviour. Transforms over a continuous time-frequency
plane (the scalogram) spanning rhythmic frequencies (0.1 to 100Hz) capture the multiple periodicities implied by
beats at different temporal relationships. Wavelets represent well the transient nature of these rhythmic frequencies
in performed music, in particular those implied by agogic accent, and at longer time-scales, by rubato.

The use of the scalogram phase information provides a new approach to the analysis of rhythm. Measures of
phase congruence over a range of frequencies are shown to be useful in highlighting transient rhythms and temporal
accents. The performance of the wavelet transform is demonstrated on examples of performed monophonic percussive
rhythms possessing intensity accents and rubato. The transform results indicate the location of such accents and

from these, the inducement of phrase structures.

1 Rhythm as a Signal

Despite a history of computational approaches to
rhythm perception and production, the treatment
of a rhythm as a signal applicable to digital signal
processing methods has not been widespread. No-
table recent exceptions have been Todd’s approach
of applying banks of Mexican hat filters [MHS80]
to an acoustic signal towards an auditory primal
sketch of rhythm [MT94], and Desain’s use of au-
tocorrelation to determine periodicities in rhythm

[DAV90].

Engineering approaches of representing an
acoustical phenomenon as a signal have brought a
conceptual rigour and considerable application to
the field of acoustics and music. Careful concep-
tualisation of musical rhythm in signal processing
terms furthers our understanding and utilisation of
rhythm in musical contexts. Equally careful consid-
eration of psychological and musicological issues is
necessary to build accurate, useful signal represen-
tations.

The use of signal processing techniques uncovers
the information inherent in the rhythm prior to our
perceptual processing. The time perception effects
such as masking [Cow84] and top-down expectancy
from subjective rhythmisation [Fra82], are consid-
ered in this paper as processes that occur in parallel
and with respect to a rhythmic frequency map.

1.1 Rhythm Frequencies

Theorists have argued for representations of musi-
cal rhythm with respect to the tactus [LJ83], and
that a rhythm can be decomposed into a hierarchy
of rhythmic strata of increasing time spans, sub-
dividing the tactus. With a constant tempo, and
no dynamic or timing accents, a repetitive beat (an
isorhythm) can be considered as a single period-
icity with an underlying frequency f = %, where
A is the inter-onset-interval (IOI) of the beat and
f is the rhythmic frequency the rate of event
presentation. An example in performance terms is
performing a ‘41 crochet rhythm; objectively accent-
ing the downbeats of each measure by intensifying
them indicates two frequencies, that implied by the
period of the crochet, and that by the period of the
semi-breve, at a quarter of the crochet frequency.

1.2 Capturing Musical Intention

In acoustic terms, the rhythmic signal is described
by the amplitude behaviour over time. Essentially,
this is an amplitude modulation of a carrier signal
in the auditory frequency range by a modulating
signal in the rhythmic frequency range. Frequency
analysis of the rectification of the time-amplitude
signal will separate the low frequency rhythmic sig-
nal from the acoustic signal [MT94].

*Many thanks go to Peter Kovesi for some example code of 1-D Morlet wavelets and Robyn Owens for comments on
drafts of this paper. Further detail and examples are available from http://www.cs.uwa.edu.au/"leigh/rhythmfreq.html
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An alternative pragmatic approach is to capture
the musician’s intention rather than capturing the
acoustic result. This is done by sampling the rhyth-
mic signal before it is made audible, that is, before it
is “multiplied” with the auditory carrier signal, and
subsequently producing an audible rhythm. For the
present purposes of analysis, electronic MIDI drum
pads were used to transduce the time of a drum
strike and a measure of intensity of the strike (MIDI
velocity). While timbre from an acoustic drum is
used to produce accenting, given that a rhythm can
be induced by a listener from timing alone, a lack
of timbral information is not significant.

1.3 Frequency Analysis of Rhythm

Wavelet transforms [RV91] were originally con-
ceived to simultaneously localise analysis in both
the time and frequency domains. Wavelets repre-
sent time-varying frequency information with bet-
ter accuracy than alternative transformation tech-
niques such as the short time Fourier transform
(STFT). Expressive timing, agogic, dynamic and
other objective accents will produce multiple, short
term frequency and amplitude varying rhythmic
signals which can be revealed with such a non-
stationary signal analysis technique.

Using very short impulse-like taps, a familiar
rhythm can be recognised, or a new rhythm com-
prehended and tapped along with. Therefore one
promising representation of a rhythmic function to
an analysis transform is to take the short duration
tap in the limit and represent the time of the onset
of each beat as a unit impulse function weighted by
a normalised measure of the intensity of the beat:

[ w127 ift=0
Wt) = { 0 otherwise,

where t is the sample index at the onset of the note,
¢(t) is the impulse value (0.0 1.0), and v is the MIDI
velocity value (1 127). The rhythm function for a
piece of music is therefore an uneven train of pulses.
The sparse, uneven pulse train can also be viewed
as an oversampling of a much lower frequency sig-
nal. The sampling rate can be low (200Hz) as the
audible frequencies are not present.

Weighting the impulse incorporates the effect
of dynamic accent, assuming there is a linear re-
lationship between the perceptual salience of an in-
dividual dynamic accent and the intensity of a beat.
This ignores the effect of masking [Cow84] of beats
by temporal proximity. Further work is therefore
needed to match the impulse weighting to the actual
psychoacoustic effect, but a simple linear mapping
seems an appropriate first approximation.

2 The Wavelet Transform

In contrast to the STFT, the continuous wavelet
transform (CWT) [RV91] decomposes a time t vary-
ing signal s(t) onto scaled and translated versions
of a mother-wavelet g(t),
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where g(t) is the complex conjugate of g(t), a is
the scale parameter, controlling the dilation of the
window function, effectively stretching the window
geometrically over time. The translation parameter
b centres the window in the time domain. The ge-
ometric scale gives the wavelet transform a “zoom-
ing” capability over a logarithmic frequency range,
such that high frequencies are localised by the win-
dow over short time scales, and low frequencies are
localised over longer time scales.

There are many choices for mother wavelets;
Kronland-Martinet and Grossmann [KMG91] have
applied a complex Gabor mother-wavelet to sound
analysis,

g(t) — eft2/2 . ei?‘ﬂ'wot’ (2)

where wy is the frequency of the mother-wavelet be-
fore it is scaled. This kernel does not meet “admis-
sibility conditions” to reconstruct the signal from
the Ws(b,a) coefficients, in contrast to orthogonal
basis functions [RV91]. While losing reconstruction,
Equation 2 preserves the phase during analysis. It
is close to a “progressive” [KMG91] wavelet, nearly
satisfying Yw < 0 : g(w) = 0, where g(w) is the
Fourier transform of g(t).

The CWT indicated in Equation 1 is a scaled
and translated filter from a constant relative band-
width (Q) filter bank, comprised of an infinite num-
ber of filters or “voices”. For implementation, a suf-
ficient density of voices per octave is required for a
discrete approximation.

Due to the progressive nature of Equation 2,
the real and imaginary components of W(b,a) are
the Hilbert transform of each other. These can be
computed as magnitude and phase and then plotted
in grey scales on a “scalogram” and “phasogram”
(Figure 1) respectively. Phase values are mapped
from the domain 0 — 27 to black through to white.
The transition from white to black indicates a re-
turn to 0. Vertical lines of constant shade indicates
a congruence of phase over a range of frequencies.

2.1 Phase Congruency and Local En-

ergy

Phase indicates the progression of a periodic wave
though its cycle. Therefore an oscillating phase
at a scale, characterised by regularly spaced dark



to white transitions, indicates that frequency is
present in the signal. Image processing research in
feature detection has found compelling evidence for
the local energy model, proposing that features of
an image are perceived at points where the Fourier
components are most in phase [MO87]. Peaks in
the local energy function can be used to indicate
points of maximum phase congruency. The local
energy function E(t) of the signal s(¢) at time ¢ can

be defined as,

E(t) = lZR[Ws(tan)] + ZI[Ws(t,n)]],

where N is the number of scales in the discretisa-
tion, and R[z], Z[z] produce the real and imaginary
outputs from the CWT of Equation 1 at each scale
respectively. It is feasible that some phase congru-
ent temporal feature detection may occur in the 1-D
case. A similar approach has been taken by Todd
with respect to Marr’s primal sketch theory of hu-
man vision [MT94].

An impulse is localised in time, but infinite in
frequency content. A CWT of an impulse localises
the impulse’s effect in the time domain at the higher
frequency scales and spreads the effect across longer
finite time periods at lower scales [KMG91]. Us-
ing a progressive mother-wavelet, a singularity such
as an impulse will be marked by a constant phase
[GHKMMS7]. The local energy function will there-
fore indicate points where the impulses fall and
where points of lesser congruence lie.

3 Examples

To understand the decomposition behaviour of the
CWT, these analyses have used monophonic per-
cussive rhythms, exhibiting intensity accenting. It
is hypothesised that listeners use timbral, spatial
localisation, pitch and other objective differences
between sound sources to distinguish between in-
dependent rhythmic patterns. Thus, a polyphonic
rhythm would be represented by a number of par-
allel wavelet analyses.

The input data to the wavelet transform were
recorded from MIDI then converted into an impulse
train at 200Hz sample rate. The wavelet trans-
formation extended over 10 octaves to a maximum
analysis window of 2048 samples, with 16 voices per
octave.

The x-axis of the scalogram plots time in sam-
ples, and the y-axis plots the frequency scale of the
dilation of the wavelet in samples of its time period.
At the highest scales (the highest y-axis values),
the time window is very short, two samples, and
the original impulse is apparent. At lower scales,

the frequency localisation is more apparent and the
rhythms are seen as parallel frequency bands corre-
sponding to the frequencies implied by impulses at
different intervals.

The CWT is demonstrated on an expressive per-
formance of the rhythm of “Greensleeves” with mul-
tiple I0Is grouped in typical proportions. Figure 1
indicates the hierarchy of frequencies implied at
each time point due to the intervals between beats
falling within each scaled kernel’s support. An ex-
aggerated shortening of the semi-quavers produces
characteristic sweeps at 480, 1000, 2480 and 3000
samples in the scalogram. The dark patterns begin-
ning around the 1600th sample at the lowest scale
are caused by the edge of the window. Extending
the analysis over longer times (at the cost of pro-
cessing) would remove these effects. The phasogram
in Figure 1 indicates higher frequency periodicities
but does not as clearly indicate the enduring low
scale periodicity with an 101 of approximately 860
samples. Inspection of the local energy (Figure 2),
reveals points of high phase congruency fall on im-
pulses (beats) at phrase endings. Local energy pro-
duces a measure of structural importance of a beat,
weighted by its intensity and its temporal context
within the rhythmic frequency hierarchy.

4 Assessment and Further

Work

Phase preserving Gabor wavelets have been pro-
posed here as a means of analysing musical rhythm.
The transform represents the rhythmic effects gen-
erated by dynamic and temporal accents in estab-
lishing hierarchies of rhythmic frequencies. This hi-
erarchical representation conforms closely with mu-
sic theories of the inducement of temporal structure,
meter and expressive timing.

A powerful model of rhythm perception has a
number of computer music applications tran-
scription, scorefile editing and computer accompa-
niment such as score following or interactive per-
formance systems. To achieve the latter applica-
tion with the continuous wavelet model requires a
real-time unambiguous determination of the tactus
or beat. This in turn requires modelling the con-
straints and behaviour of human perception and
performance. Todd has proposed two peak recep-
tive bandwidths in the rhythmic frequency spec-
trum (corresponding to body sway and foot-tapping
tempos) which strongly influence the listener’s per-
ception of tactus [MT95]. Investigation into the ap-
plicability of such a theory to the described model
is necessary.
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Figure 1: Time-Scale scalogram (top) and phasogram (bottom) displays of a CWT of the rhythmic impulse
function of a performed version of “Greensleeves” possessing expressive timing modulations from the notated

rhythm.
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Figure 2: Local energy display of a CWT of the same performed “Greensleeves” rhythmic impulse function as

Figure 1.



