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Abstract

This thesis describes an approach to representing musical rhythm in computational

terms. The purpose of such an approach is to provide better models of musical time

for machine accompaniment of human musicians and in that attempt, to better

understand the processes behind human perception and performance.

The intersections between musicology and artificial intelligence (AI) are reviewed,

describing the rewards from the interdisciplinary study of music with AI techniques,

and the converse benefits to AI research. The arguments for formalisation of mu-

sicological theories using AI and cognitive science concepts are presented. These

bear upon the approach of research, considering ethnographic and process mod-

els of music versus traditionally descriptive methods of music study. This enquiry

investigates the degree to which the human task of music can be studied and mod-

elled computationally. It simultaneously performs the AI task of problem domain

identification and constraint.

The psychology behind rhythm is then surveyed. This reviews findings in the

literature of the characterisation of elements of rhythm. The effect of inter-onset

timing, duration, tempo, accentuation, meter, expressive timing (rubato), the inter-

relationship between these elements, the degree of separability between the percep-

tion of pitch and rhythm, and the construction of timing hierarchy and grouping

is reported. Existing computational approaches are reviewed and their degrees of

success in modelling rhythm are reported.

These reviews demonstrate that the perception of rhythm exists across a wide

range of timing rates, forming hierarchial levels within a wide-band spectrum of fre-

quencies of perceptible events. Listeners assign hierarchy and structure to a rhythm

by an arbitration of bottom-up phenomenal accents and top-down predictions. The

predictions are constructed by an interplay between temporal levels. The construc-

tion of temporal levels by the listener arises from quasi-periodic accentuation.

Computational approaches to music have considerable problems in representing
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musical time. In particular, in representing structure over time spans longer than

short motives. The new approach investigated here is to represent rhythm in terms

of frequencies of events, explicitly representing the multiple time scales as spectral

components of a rhythmic signal.

Approaches to multiresolution analysis are then reviewed. In comparison to

Fourier theory, the theory behind wavelet transform analysis is described. Wavelet

analysis can be used to decompose a time dependent signal onto basis functions

which represent time-frequency components. The use of Morlet and Grossmann’s

wavelets produces the best simultaneous localisation in both time and frequency

domains. These have the property of making explicit all characteristic frequency

changes over time inherent in the signal.

An approach of considering and representing a musical rhythm in signal process-

ing terms is then presented. This casts a musician’s performance in relation to an

abstract rhythmic signal representing (in some manner) the rhythm intended to be

performed. The actual rhythm performed is then a sampling of that complex “inten-

tion” rhythmic signal. Listeners can reconstruct the intention signal using temporal

predictive strategies which are aided by familarity with the music or musical style

by enculturation. The rhythmic signal is seen in terms of amplitude and frequency

modulation, which can characterise forms of accents used by a musician.

Once the rhythm is reconsidered in terms of a signal, the application of wavelets

in analysing examples of rhythm is then reported. Example rhythms exhibiting

duration, agogic and intensity accents, accelerando and rallentando, rubato and

grouping are analysed with Morlet wavelets. Wavelet analysis reveals short term

periodic components within the rhythms that arise. The use of Morlet wavelets

produces a “pure” theoretical decomposition. The degree to which this can be

related to a human listener’s perception of temporal levels is then considered.

The multiresolution analysis results are then applied to the well-known problem

of foot-tapping to a performed rhythm. Using a correlation of frequency modulation

ridges extracted using stationary phase, modulus maxima, dilation scale derivatives

and local phase congruency, the tactus rate of the performed rhythm is identified,

and from that, a new foot-tap rhythm is synthesised. This approach accounts for

expressive timing and is demonstrated on rhythms exhibiting asymmetrical rubato

and grouping. The accuracy of this approach is presented and assessed.

From these investigations, I argue the value of representing rhythm into time-

frequency components. This is the explication of the notion of temporal levels
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(strata) and the ability to use analytical tools such as wavelets to produce formal

measures of performed rhythms which match concepts from musicology and music

cognition. This approach then forms the basis for further research in cognitive

models of rhythm based on interpretation of the time-frequency components.
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Chapter 1

Music and AI — Mutually

Beneficial Research Tasks

“It is very simple. If you consider that sound is characterized by its pitch, its

loudness, its timbre, and its duration, and that silence, which is the opposite

and, therefore, the necessary partner of sound, is characterized only by its

duration, you will be drawn to the conclusion that of the four characteristics of

the material of music, duration, that is, time length, is the most fundamental.

Silence cannot be heard in terms of pitch or harmony: It is heard in terms of

time length. It took a Satie and a Webern to rediscover this musical truth,

which, by means of musicology, we learn was evident to some musicians in

our Middle Ages, and to all musicians at all times (except those whom we are

currently in the process of spoiling) in the Orient.”

John Cage “Defense of Satie” [72, pp. 81]

“Motion is the significance of life, and the law of motion is rhythm. Rhythm is

life disguised in motion, and in every guise it seems to attract the attention of

man: from a child, who is pleased with the moving of a rattle and is soothed

by the swing of its cradle, to a grown person whose every game, sport and

enjoyment has rhythm disguised in it in some way or another, whether it

is a game of tennis, cricket or golf, as well as boxing or wrestling. Again

in the intellectual recreations of man, both poetry and music — vocal or

instrumental — have rhythm as their very spirit and life. There is a saying

in Sanskrit that tone is the mother of nature, but that rhythm is its father.”

Hazrat Inayat Khan, “Rhythm”, from “The Mysticism of Sound

and Music” [70].

1



CHAPTER 1. MUSIC AND AI 2

1.1 AI and Applications to Music

A significant problem with existing computer systems when applied to domains of

music such as performance, composition and education are their extremely limited

models of human musical knowledge and endeavour. These problems are noted by

Stephen Smoliar [166] and well surveyed by Curtis Roads [145]. This has resulted

in computer music systems which will function satisfactorily in limited domains of

musical expertise but are easily “broken” in the face of unexpected inputs. These

unexpected inputs are typically the result of human improvisation or ingenuity in

interacting with a machine.

In attempting to construct a computer interactive performance system which is

capable of interacting in a performance situation, such as playing in an ensemble or

improvising with a human performer, the ability to respond to novel inputs becomes

a necessity [149, 91, 160]. Even in non-realtime music applications, there is the need

for better representations of music to make the system commands more intuitive,

by making them correspond more closely to musical concepts and manipulate more

meaningful musical data objects than is the current practice.

1.1.1 The Value of Formalisation of Musicology

This thesis constitutes an enquiry into the degree to which musicological theories

which have been proposed can be rendered into formal models and tested. These

formal models provide a “runable” theory of rhythmic structure allowing one to

systematically test theories which have been experimentally determined from music

psychology or those produced from more traditional music theory (codification of

performance practice).

The limitations of current computer music systems can be seen in a wider con-

text to be the result of attempting to produce a descriptive or artifact based model

of music. This models the artifact, the score, or the recording, with only implicit

consideration of the human cognition behind the musical material. The alternative

approach is to construct ethnographic or process models. This has stimulated re-

search in cognitive musicology, modelling the composition or performance processes

of music computationally [139, 81]. Otto Laske et. al has engagingly argued the

value of building computational models of musical intelligence:

“At the very least, they [AI models] show researchers what, in music,
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does not yield to rule formulations, requiring perception-based, rather

than logic-based, constructs. Knowledge-based systems are thus explor-

atory devices and tools of criticism, rather than definitive accounts of

knowledge.

. . . As a scientist elucidating musical action, the modern musicolo-

gist is a humanist fast becoming a knowledge engineer in the service of

anthropology.

. . . Musicology, like many of the humanities, has remained a predom-

inantly hermeneutic science, focusing on the meaning of music structures

for idealized listeners and on some vague collective spirit (often tinged

with national colours).

. . . much of the research program of artificial intelligence is a refor-

mulation of the failed research agenda of subjectivist philosophies from

roughly 1450 to 1950 (Nicolaus of Cusa to Theodore Adorno).

. . . The main deficiency of subjectivist approaches to modelling rea-

son as intelligence lies in the fact that human reason is cut off from

human action, and is simultaneously viewed as the agency that controls

action (This is the legacy of Descartes and Kant).

. . . we see the real challenge of AI and music in establishing cognitive

musicology as an action science.

[The discipline of AI and Music] . . . focuses, not on intelligence,

but on knowledge, which is a much broader notion; more specifically,

it focuses on musical knowledge as an agency for designing musical ac-

tion (theory-in-use), rather than on an agency supposedly understanding

some sounding reality “out there”.” (my emphasis)[81, pp. 19–24]

An action science is geared to understanding the theory-in-use of actors (theo-

retical musicology) and to improving the way in which the actors act (applied musi-

cology). Therefore formalizing and implementing espoused musical knowledge, then

testing it in performance situations has a critical value in demonstrating what is not

understood about musical action, as much as what is.

1.1.2 Music’s Value to AI

Music is detached of inherent meaning from its materials. We cannot speak of the

“meaning” of a chord or a rhythm in the same sense we speak of the meaning of a
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word or image. This separation offers music as a prime candidate for AI research.

Listening to music can be considered as thinking in, or with sound, and organising

sound. At the same time, knowledge of music is concrete and deeply rooted in the

physics of the actual sounds themselves. Musical cognition emerges in music due to

its serial nature. Language or speech about music fails to reveal musical processes.

These qualities argue the value of studying music as a non-verbal knowledge repre-

sentation which forms a “narrow” and “deep” problem domain. Marvin Minsky has

convincingly argued [116] that these characteristics offer music as a work bench for

knowledge representation and AI techniques.

1.2 Multiresolution Analysis of Rhythm

Modelling the human perception of performed musical rhythm offers many insights

into the psychology of time perception [55], quantification of musical theories of per-

formance and expression [81], and non-verbal artificial intelligence knowledge rep-

resentation [116]. This thesis describes an approach of representing musical rhythm

in computational terms and then analysing it using multiresolution techniques. The

analysis results are then applied to an interpretation task—foot-tapping to per-

formed rhythms. The output of this foot-tapping task can be an accompaniment

to the original rhythm which can be audibly verified for its accuracy and musical

appropriateness.

By considering rhythm as a low-frequency signal, wavelet signal processing the-

ory and analytical techniques can be applied to decompose it and reveal its spectral

components. From these components an executable theory can be constructed (in

the form of a computer program) of a listener’s perceptual processes. The extent to

which a decomposition provides a musical handle to aid in machine understanding

in all rhythmic cases is a question which is addressed in this thesis by experimenta-

tion. The extent to which rhythm analysis reveals knowledge about human mental

processes is addressed in anthropological terms in the next section.
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1.3 Anthropology of Computer Music Research

Models of musical time must address the issue of cultural specificity. Comparison

of Western and non-western musical behaviour and perception can be used to fur-

ther distill elements of universality of rhythm perception. Most music studied and

reported in music psychology literature is within the bounds of traditional Western

musical thought, and notions of metricality. While this does indeed cover a wide

range of possible contemporary art and popular music, a model built using such

research is implicitly constrained by the degree metricality can adequately represent

music not conceived within the theoretical paradigm of meter, such as some avant-

garde Western music, and non-western music. Understanding the degree to which a

multiresolution approach can address such genres provides for worst case testing of

the concept.

1.3.1 Enculturation of Music

John Blacking has proposed that music is a result of a synthesis of cognitive pro-

cesses of a particular society, with processes of biological origin [117]. In psycholog-

ical terms, societal knowledge as external actions is internalised to become internal

actions, communicated through semiotic mechanisms to convey meaning to the indi-

vidual. Enculturation of the individual is argued by Moisala as a two-stage process,

initially by perception of sound in interaction with the outside world, and then by a

process of organisation of that internalised knowledge within intrapsychological cat-

egories [117]. Indeed, Moisala argues that in order to understand musical cognitive

processes it is necessary to study musical practices and performance within a cul-

tural context. Not merely the auditory result, but the spatio-motor and theatrical

elements in the production are essential in communication of meaning.

There is then always a question hanging over any research to the degree that

investigations reveal what portion of perception is culturally informed and what

processes are universal. This universality may be either from biological processes

or cognitive constructs which are from a cultural source which is so fundamental to

societies, that it is a common “wisdom”. Any model which proposes to use neu-

rologically influenced architectures (i.e neural networks [182]), must clearly identify

the degree to which musical knowledge is universally coded, versus culturally con-

structed, if there is an attempt to match computational models against cellular
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recordings and findings from neuroscience.

In order to build robust functioning computational models of musical rhythm it

is important to review how rhythm is conceived in other cultures and the process

of reception of new music into an existing culture (from another culture or from

within). This argues for the need to embody any computer system with a priori

context or otherwise train the system on a corpus of music.

1.3.2 Rhythms of New Music

While music theory must implicitly draw on perceptual constraints, from a mod-

ernist perspective, the enunciation of a theory has given composers mental models

with which to conceive new music, driving performers and listeners to develop new

modes of listening. This has an impact on the degree to which psychological models

of listening are indeed inherent. The intentional convergence between expressive

timing and phrase structure, reflected in proportional rhythmic notation1 in con-

temporary Western art music, indeed calls into question the role and separability of

expressive timing [15].

Minimalist experimental pieces such as sound installations and ambient music

by LaMonte Young [36] and more popularly, Brian Eno [176], are examples within

Western music of composers/performers perhaps intuitively refocusing the listener’s

perception to depend on longer auditory memory in preference to typical rates of

beats which fall within short term memory. The engagement of a different auditory

rate may well explain the distinct restful or contemplative mood that such music

can bring. At another extreme the monumental polyrhythmic player piano studies

of Conlon Nancarrow [46] push to the limits the listener’s comprehension of the

composers intention. It can well be surmised that the listener is distilling a subset

of the rhythmic information presented, interpreting those streams of sound which

the listener’s segregation by melody and timbre [10] highlights. Purposefully non-

rhythmic music, such as the aleatoric compositions of John Cage [13] or some forms

of free improvisation [3], challenge existing notions of musical organisation, but as

Cage has recognised, the overall structural form of a performance remains as a

coherent whole.

1The horizontal distance on the stave between notated beats indicates directly the time between
events. Works by Stockhausen, Ligeti and Boulez have all adopted such a notational convention
[49, 15].



CHAPTER 1. MUSIC AND AI 7

1.4 Thesis Structure

Suitable input representations must be devised in order to construct a computer sys-

tem to model the perception of some aspect of music. Considerable music psychology

literature has identified the complexity of tonal representations and the interrelated

influence that tonal expectations have upon rhythm and phrase structuring and vice

versa [78]. To limit the problem domain, the task of modelling the interpretation

of rhythm has been adopted. This forms a domain which is of itself phenomenolog-

ically complete, in that music constructed entirely from indefinite pitch percussion

can be listened to and appreciated [49, 13]. While this reduces the number and

semantics of objective perceptual cues to be considered in computational models,

there is considerable complexity in the phenomenon of musical rhythm.

The complexity of musical rhythm and the variable successes in existing models

is a strong argument for developing new methods of representation of rhythm which

reflect its perceptual features. Chapter 2 surveys music psychology, musicology and

ethnomusicology literature illustrating the layered, hierarchial nature of rhythm as

conceived and performed in Western and non-western musics. The hierarchy of

musical time and the effect of expressive timing has a natural description in terms

of time-varying frequencies. In Chapter 2 this perspective is explored in depth.

An analysis technique which has shown considerable success in analysing time

varying frequency signals is the continuous wavelet transform (CWT). Such analysis

has shown its worth in analysing auditory signals. Chapter 3 investigates the ability

to analyse rhythmic signals using such approaches, particularly the degree to which

such a conception matches listeners’ perception of rhythm detailed in Chapter 2. The

purpose behind the analysis is to reveal more detail of the signal than that avail-

able from the time-domain representation before building cognitive models. With

a clearer representation of the signal it is then possible to construct time-frequency

based interpretative models.

The capabilities of multiresolution analysis when applied to rhythmic signals are

demonstrated on a corpus of test rhythms in Chapter 4. While these are not the

only rhythms that have been tested with the analysis, they are representative of

the results obtained in all cases. The mathematical proof of decomposability using

the continuous wavelet transform does not guarantee the constituents will meaning-

fully reflect principal rhythmic attributes. This chapter assesses experimentally the

generality of the approach, rhythms exhibiting meter change, agogic accent, ritard
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and acceleration, and several other forms of rubato are analysed. Both synthetic

rhythms and well known rhythms used by other researchers are tested.

Having investigated and interpreted the results of rhythmic analysis manually,

several related approaches to automatic interpretation of the analysis are described.

Wavelets allow us to review the original data from a different time-frequency per-

spective and begin to propose cognitive models. Chapter 5 investigates a now well

defined computer music “problem” of foot-tapping. This problem is approached

using the analysis results of Chapter 4. The results demonstrate the representative

power of the multiresolution approach and the benefits of an interpretative measure

constructed from such. The outcomes of the research, new contributions, and future

applications are assessed in Chapter 6.



Chapter 2

The Hierarchial, Multiresolution

Character of Musical Rhythm

“To adequately portray rhythm, one must shift from descriptions based

on traditional acoustic variables to one based on diverse interactive levels.

It is clear that the overall patterning of the acoustic wave brings about

the perception of a rhythm, but the rhythm cannot be attributed to any

single part of the wave . . . It is the independent production of the various

rhythmic levels that allows the elasticity, the rubato of music, as well as

the independence of stress and accent in speech and the independence of

meter and grouping in music. In the same way, it must be the parallel

perception of these levels that allows for the perception of rhythm.”

Stephen Handel “Listening” [55, pp. 458].

Inter-related effects of different dimensions of music impinge on its perception.

It will be shown in this chapter that certain dimensions of music are interpretable

even in the face of impoverished attributes from other dimensions. That is, there

are dimensions of music which are structurally significant enough to warrant, and

can withstand, independent investigation. These dimensions include those that have

classical definition within music theory, most notably pitch, rhythm and dynamics

(amplitude). The dimension of rhythm is investigated here by reviewing findings of

music perception research and music theory.

Clarke defined rhythm as: “the grouped organisation of relative durations with-

out regard to periodicity” [14]. Dowlings definition is: “A temporally extended

pattern of durational and accentual relationships” [35, pp. 185]. The definition from

9
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Parncutt [130] is that musical rhythm is an acoustic sequence evoking a sensation

of pulse.

Research in rhythm perception has been marked by complexity and compet-

ing theories, which reflects the complexity of our temporal perceptual processes.

Context sensitivity, the interrelationship of timing and melody, and an absence of

invariant perceptual features are contributing factors to the complexity of rhythmic

analysis [55]. Multiple perceptual systems are posited as involved in temporal and

rhythmic processing and produce a multidimensional perception.

Both the perception and the production of rhythm are demonstrated here as

processes that occur over a wide range of time scales. The context for listening to a

rhythm is created by the interrelationship between perceptions of inter-onset inter-

vals over multiple time spans. The production of a rhythm by performers involves

a conception of a beat to be performed within an intended context of impending

events. The performer conceives the rhythm as an end result of a number of parallel

intentions in time, reflecting knowledge of the rhythmical context and pace of the

performance.

The aim of this chapter is to elucidate the essential structural information which

is communicated to a listener. This is due to the interplay of expression against the

structural base in relation to one or more metrical contexts. Musical meaning and

intention are communicated from the performer to the listener by relating timing

deviations to tension/relaxation principles as proposed by theorists such as Meyer

[112] and Sloboda [159].

2.1 Timing Behaviour and Constraints

Fundamental to any conception of rhythm is the perception of timing by the listener.

Musical time perception is bounded by a listener’s capability of perceiving audible

events. Rhythmic definitions differ between authors; drawing from Lerdahl and

Jackendoff’s view, a beat can be defined as a durationless element, a time point [84],

typically in relation to a temporal structure, such as a meter (Section 2.2.4). The

Inter-Onset Interval (IOI) between onset times of audible events measures timing in-

tervals. Audible percepts can be distinguished between stimuli of short sounds, such

as impulses or clicks, and of sustained tones [190]. As will be seen in Section 2.2.1

on accentuation, these differences can be reviewed as two extremes of dimensions

which cause accentuation. Fundamental to either case is the relative timing of the
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Figure 1: A time/amplitude plot of a succession of two notes, both with a funda-
mental frequency of 440Hz (concert pitch A), with a piano-like amplitude envelope
and a pure sinusoidal timbre (no harmonics). Also shown are the timing terms used
to describe musical rhythm.

IOIs between events. Other common notions and terms used to describe the timing

of musical events are displayed in an amplitude-time graph of Figure 1.

Conceptions of time enable two notable behaviours: synchronisation with a per-

ceived rhythm, and the notion of the present. These behaviours are dependent on

low-level auditory processes including neurobiologic clocks and masking effects. Re-

viewing the literature on these behaviours and auditory processes informs musical

rhythm modelling; however, studies in auditory time perception have often used

isolated, non-musical stimuli. The absence of a rhythmic context may therefore

be skewing reported results towards the limits of perception rather than common

performance.

2.1.1 Synchronisation

As a rule of perception across modalities, subjects (i.e. listeners) react following a

stimulus, yet synchronisation produces responses at the same time as the stimuli, so

the temporal interval itself is driving the response. Regularity seems to be less funda-

mental to synchronisation than a listeners ability to anticipate and predict, such that

accelerating or slowing rhythms can still be synchronised (at typical rates). For reg-

ular patterns, synchronisation can be established very quickly from the third sound

on and synchronisation of repetitive patterns is achieved from the third pattern
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on [41]. Developmental research indicates that perception of synchrony is poten-

tially biological; children as young as 4-months preferred synchronisation between

a visual stimulus and accompanying auditory cue in preference to unsynchronised

stimuli [170, 35, pp. 194]. Children’s earliest spontaneously performed songs have

steady beat patterns within phrases [35, pp. 194]. Thus a model of musical time

must be capable of generating synchronisations after two or three beats and model

expectation.

2.1.2 The Subjective Present—Our Concious, Ongoing Ex-

perience

Subjective present is a term characterised as “the feeling of nowness” [134, 155], a

span of attention, a window over time, or the interval of temporal gestalt perception

[41]. It is considered the interval where all percepts and sensations are simulta-

neously available for processing as a unit [130]. The subjective present has been

argued by Dowling and Harwood to be the perceived sense of sensory or echoic1

precategorical acoustic memory, a brief store of unprocessed auditory information

[35].

Time-spans of the Subjective Present

Evidence presented by Cowen suggests that auditory stores are integrating buffers of

a continuous stream of data, rather than a discrete, gating buffer. The integrating

period is proposed to be limited to the first 200 msec, with a relatively constant decay

in memory recall of events from 500 msec delay and longer (see Cowen’s comparison

of results [19, pp. 353]). This integration creates non-linearities between the initial

processing of stimuli and processing for longer retention of the events.

Seifert has proposed that in order for a musical phrase to be perceived as a

structured entity, the total length must remain within the time span of the sub-

jective present [156, pp. 174], citing the fact that cycles of rhythms in African and

Arabic music are roughly 2800–3000 msec duration. From this, Seifert has hypoth-

esised that all repetitive (or perhaps all expectable) time patterns must lie within

the bounds of our subjective present [156]. Woodrow [190] reported a relatively

constant just noticable difference (JND) discrimination of single intervals bounded

1In comparison to visual iconic memory.
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by short audible clicks over a range of intervals from 200 to 1500 msec. As noted by

Dowling and Harwood [35, pp. 185], this JND was significantly higher reproducing

isolated intervals than when discriminating intervals in the context of a repeating

beat pattern.

Dowling and Harwood have reported the window’s size bounding the perception

of the present ranges from 2 seconds to rarely more than 5 seconds. A maximum of

10–12 sec of present is only achievable by “chunking” (i.e. grouping) long sequences

into sub-sequences [35]. For the purposes of his model Parncutt has surveyed lit-

erature to estimate the maximum echoic memory length to be 500 msec and the

subjective present as 4 seconds. He reports experimental results estimating sub-

jective present ranging from 2 to 8 seconds. The perception of a sense of pulse is

argued by him to be limited by the time span of the subjective present [130]. The

span of subjective present is dependent on the IOI: “faster the presentation rate, the

shorter the memory span” [130, pp. 451]. Yako has likewise argued for conceptions

of subjective present weighted by their location over hierarchies of time [191].

Short and Long Auditory Stores Within the Subjective Present

Within the single integrating period of the subjective present, several shorter inte-

grating periods occur. Seifert conjectures two levels of cognition, the perceptual and

the cognitive. The former is automatic, forming a pre-cognitive integrating func-

tion. In his view, cognitive level processing is not automatic and is under conscious

control [156]. His definition of cognitive processing may differ from the typical def-

inition, but what does seem clear is that in attending to auditory sequences, there

is a distinction between material which can focused apon using learnt knowledge

and that for which the processing is automatic. Bregman [10] describes these as

primitive and schema-driven auditory scene analyses, discriminated by the latter’s

requirement for attention and concious control.

Cowen has surveyed evidence of two different auditory memories, a Short Au-

ditory Storage (SAS), “a literal store that decays within a fraction of a second

following a stimulus” [19, pp. 343] and a Long Auditory Store (LAS), lasting several

seconds. While described as storage, it is more probable that patterns of neural ac-

tivity over timespans produce “levels of processing” [19, pp. 363] from which arises

the functional equivalent of time limited storage.
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Short Auditory Store (SAS)

Short term auditory memory is more directly representative of the original stimulus

than LAS, and time-limited. Cowen compares a number of experimental findings

measuring SAS temporal integration and decay, concluding that SAS is between

150–350 msec constant duration from stimulus onset, experienced as a sensation,

and consisting of a recency biased average of the spectral components of the pre-

sented sounds. When interference with the SAS occurs from distracting stimuli,

that interference is unable to be prevented, resulting in the loss of existing memory

of events, a phenomenon known as masking, described in Section 2.1.4.

Measures of the persistence of an auditory stimuli indicated sounds shorter than

130 to 180 msec (depending on visual or auditory cues) were judged by subjects to

be of equal length to sounds actually of that duration [19, pp. 343]. Such minimum

time measures suggest some form of constant integrating process occuring over a

timespan of the SAS duration.

Long Auditory Store (LAS)

Long auditory store (LAS) within the subjective present is summarised by Cowen as

lasting a maximum of 2 to 20 seconds or more, experienced as a memory of features of

a sound sequence, most probably from SAS, and stored as partially analysed input.

Stimuli interfere with previous stimuli only partially, and total masking does not

occur, unlike SAS. Estimates of the duration of long auditory memory has varied

across published studies, possibly as a result of varied quantities of information

inherent in the stimuli aiding recall. From Cowen’s review of these, there does

however, appear to be a trend of a rapid decay of storage in the first 2 seconds, with

a slower decay out to at least 10 seconds. In contrast to SAS, at LAS periods, no

minimum persistence effect has been reported.

2.1.3 Hierarchies of Time

Seifert cites research supporting the theory of mental “time quanta” and pulse [130]

and describes Pöppel’s taxonomy of elementary time experiences [134] with respect

to rhythm perception as a means of describing levels of such time quanta:

a Events consisting of short term sound bursts within 0 to 2–5 msec are perceived

as simultaneous, indistinguishable (even with different loudnesses, but same
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duration), as a single event.

a Events from 2–5 to 40 msec apart can be distinguished, but no order relation

can be indicated.

a Events above 30 to 50 msec apart can produce an order relation (i.e order

between the events can be distinguished).

In Seifert’s description of Newell’s time constraints on cognition, identified as

different temporal “bands”, the cognitive band is quoted as: “ . . . the apparatus

necessary to go from neural circuits (the top level of the neural band) to general

cognition that requires four levels. It takes us 10 msec up past the level of im-

mediate external cognitive behaviour at [approximately] 1 second” [155, pp. 291].

Neural circuits are claimed to act within 10 msec, and cognitive behaviour to occur

within approximately 1 sec, resulting in 100 steps or time periods to produce cogni-

tive behaviour. This sets strong restrictions on the architecture used for cognitive

modelling. According to Newell, the real-time constraint on cognition is: “only [ap-

proximately] 100 operation times (two minimum system levels) to attain cognitive

behaviour out of neural-circuit technology.” [155, pp. 291].

Seifert argues that 30 msec lower bounds are to be expected for rhythmic discrim-

ination abilities, due to a similar performance in discriminability between closely oc-

curing auditory events. However, when considering expression, particularly rubato

effects (including phrase final lengthening [97, 98]), and accelerando/rallentando

(tempo deviations), listeners discrimination abilities may well be quite different as

they are then judging deviation times—as slight as 5–2 msec, (200Hz–500Hz) from

a context of beats falling at a fundamental frequency on the order of 3 sec period

(0.3Hz).

Handel estimates a 50 msec lower bound on the IOI between events to be per-

ceived as a sequence, rather than a continous tone [55]. The percept of a continuous

stream may well result from auditory persistence discussed in section 2.1.2. Handel

estimates 1.5–2.0 secs to be the longest IOI before the sense of repeating sequence

changes to a sense of isolated events.

From the above literature, one can conclude that listeners have absolute and

relative memory limits. Within a short span of a few seconds which constitutes a

perception of subjective present, a number of temporal bands exist, rather than a

continuous equally perceivable range. These ranges are summarised in Section 2.4.2.



CHAPTER 2. MULTIRESOLUTION MUSICAL RHYTHM 16

Forward Mask Target Backward Mask

Time
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Figure 2: Illustration of the reducing effect on perceptual salience of a target tone
when in close temporal proximity to either a forward or backward masking tone.
The masked sound’s intensity will be perceived as reduced, even to the point of it
becoming imperceptible.

These limits influence the process of grouping temporal events, establishing limits a

computational model should address.

2.1.4 Masking

Auditory masking is the phenomenon of a sound modifying a listener’s perception of

another sound. Masking diminishes the perception of one signal due to the temporal

or spectral proximity of a second (see Figure 2). Masking occurs most strongly at

short delays, decreasing to an ineffective degree past approximately 200 msec [19,

pp. 346]. Massaro demonstrated backwards masking [96, 19], finding that when

presenting listeners with two short duration sounds, the preceding sound (the target)

can go unnoticed when followed in rapid succession by the second sound (the mask ).

Forward masking occurs where the decaying trace of the earlier mask sound can

affect detection of the target sound [19].

The effects of masking suggest the existence of some form of SAS which holds

auditory events as a trace across a short time period of 200 to 300 msec. Cowen has

proposed that forward masking occurs from the persistence of the memory of the

mask and accordingly, backward masking interferes with the detection of a sound by

interrupting the auditory persistence in SAS arising from the earlier tone’s duration.

For total masking to occur, rendering the target tone inaudible, the mask must also

be of longer duration or more intense than the target [62, 19].

Todd has proposed that summation of echoic memory peak responses provides a

mechanism to model such masking. Backwards masking is proposed as interrupted

temporal summation and forward masking as incomplete recovery from adaption.
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The end-product of the interrelation of temporal integration, adaption and “en-

hancement” creates accented events if these processes collectively increase total

neural activity [103, pp. 41].

2.1.5 The Neurobiological Basis Of Rhythms

There has been a long history of investigation into the degree of association between

other body functions and temporal perception. Early research unsuccessfully at-

tempted to find a direct connection with walking pace or with the period of word

utterances [190, 41]. Early childhood motor actions such as sucking and rocking have

periods of 600 to 1200 msec, and 500 to 2000 msec respectively, which fall within

the range of spontaneous and preferred rhythmic rates [41]. It may be that biolog-

ical processes such as breathing, walking or heart beats form underlying cues for

qualitative judgements of duration. As Woodrow has noted, and musical pedagogy

commonly adopts, the act of counting to oneself is a common method of accurate

quantitative estimation of time which can be used to extend time estimation into

periods of several minutes [190, pp. 1235]. Of course, this is using a cumulative

estimation of periods falling within the bounds of SAS.

Several researchers have proposed the presence of internal clocks. The use of an

internal clock can serve to plan when a new action is required, to act as a temporal

goal. Shaffer studied the performance of a skilled pianist in varying a polyrhythm

in two hands with respect to the tempo of both hands together, and independently

[157]. The pianist’s ability to perform such variations suggest separate time-keeping

levels. Handel suggests the existence of separate clocks for each hand together with

a higher-level clock which can entrain the lower-levels and provide reference timing

[55]. It is perhaps more feasible that we have a number of clocks which can be

assigned to be, or are intrinsically, dedicated to specific anatomical motor control

and also function to provide clocks which allow for rhythmic planning and prediction.

As Seifert, Olk and Schneider [156] note, there is a strong connection between ac-

tion (motor behaviour) and perception, and a motor theory of perception is proposed

by them as the most suitable model of rhythm perception, with the understanding

that this does not necessarily imply a relation to neurological functions. Todd [102]

has taken issue with the neurobiological clock proposals, but has proposed that

biological processes do contribute to absolute time constraints which produce pre-

ferred pulse rates and therefore mediate rhythm perception. Todd’s model proposes
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a motor basis to rhythm perception, thus amalgamating production and perception

tasks. He proposes a body sway rate of 0.2Hz (5 seconds interval) and foot tap-

ping frequency of 1.7Hz (600 msec period) as centres of maximum pulse salience.

Further, he controversially proposes the vestibular system, normally attributed to

providing the body’s sense of balance, as responsible for the perception of auditory

rhythms. However both foot-tapping and body sway rates are derived from produc-

tion behaviour, not perception aspects. It is unclear how such proposed biological

biases as these would still allow such a wide choice of tempo behaviour and fluid

shift between tempos that is seen in musical rhythms.

2.2 Principal Rhythmic Attributes

Certain properties of rhythm are explicitly represented in Western music theory:

tempo, relative durational proportions of events and rests, and meter. In some re-

cent Western music, grouping relations may be notated by slurs [15], however most

grouping and other properties emerge from continuities or discontinuities between

elements, and interactions between a listener’s sense of timing, pulse and accentu-

ation. Both explicit and emergent dimensions of rhythm are now detailed, noting

their character and interrelationship.

The dimensions of musical rhythm are reviewed here to characterise musical

processes which any computational model must address. Rhythmic information is

more fundamental to music cognition than pitch. Early research showed familiar

tunes can be recognised by their rhythmic patterns alone [35, pp. 179]. Rhythmic

information dominates over pitch in multidimensional scaling tasks to determine

primary stimulus dimensions.

The use of multidimensional scaling of similarity judgements, comparing pairs

of rhythmic stimulus patterns, has produced dimensions closely matching a layered

rhythm model. These dimensions correspond to differences in meter and tempo, ac-

cent of the first beat, patterns of accents and durations, variation versus uniformity

and rigidity versus flexibility. Dimensions of affective meaning were also prominent:

excited versus calm, vital versus dull; and character of movement: graceful ver-

sus thumping, floating versus stuttering [55, 41]. Multidimensional scaling has also

been applied to combined melodic and rhythmic patterns. Major dimensions were

2-element versus 3-element patterns and inital-accent versus final-accent. Melodic

contour was only the third significant dimension in similarity judgements. Rhythm
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is a more distinctive parameter and important in music cognition [35]. Perform-

ers’ actions are (perhaps unconciously) intended to communicate (or create) these

dimensions and factors.

2.2.1 Accentuation

Accentuation produces difference between musical notes, distinguishing accented

sounding events from temporally adjacent ones. Effectively, the establishment of

difference between events allows extension of the perception of auditory processes

over timescales longer than the SAS. Tangiane has argued that a rhythm only occurs

when a periodic sequence can be segmented into groups [177]. Fraisse asserts the

basis of rhythm is the ordering in time of temporal relationships between events,

rather than the notion of rhythm arising from patterns of accentuated beats. Ev-

idence for this comes from variation between listeners in identifying which beats

are accented sufficiently to indicate a downbeat [41].2 Parncutt measured subjects

tapping to isochronous patterns3 and also found wide variation in choice of down-

beat, the variations included tapping at the notated rate (the tactus) but with a

phase shift [130]. As will be shown below, temporal and accentual influences on the

perception of rhythm are interrelated [41, pp. 151].

Lerdahl and Jackendoff have distinguished accents into metrical , phenomenal,

and structural types according to their effect on groups [84]. Metrical accents occur

where the emphasised beat is related within a metrical pattern (repeating regular

accentuation of beats). Phenomenal accents are considered to exist at the musical

surface, emphasising a single moment, enabling syncopations (accents out of phase

to the underlying meter) to be perceived. Structural accents are defined as “an

accent caused by the melodic/harmonic points of gravity in a phrase or section—

especially by the cadence, the goal of tonal motion” [84, pp. 17]. A structural accent

is therefore perceived with relation to the unfolding phrasing and structure of the

music longer than a measure’s length, whereas a metrical accent is perceived within

a recurrent short time span defined by the meter.

Accentuation is achieved by objective differences between sounding events, en-

abling the grouping of sounds in time. As will now be described, a listener will also

subjectively accent sounds which are in fact isochronous, in the absence of objective

2The downbeat is the first beat of a metrical pattern and usually perceived as accented.
3Sequences of sonic elements having identical interval, pitch, timbre and intensity. Fraisse uses

the term rhythmic cadence [41].



CHAPTER 2. MULTIRESOLUTION MUSICAL RHYTHM 20

accents.

Subjective Rhythmisation

Subjective rhythm is a historical term used to describe the grouping of isochronous

pulse trains into twos, threes or fours. The first element of the group is perceived

as accented, and the interval between last element and the first element of the next

group is perceived as lengthened [41]. In modern terminology, the term subjective

metricality is now more appropriate [80]. Subjective rhythmisation evokes a sense

of pulse whose period is longer than that of the stimulus [130, pp. 421].

The relative length of a silent interval following a tone in equitone sequences is

a determinant of the perceived accent on that tone. Povel and Okkerman [137, 41]

varied both the first or second IOIs between tone pairs in otherwise isochronous

(equitone) sequences. They sought to determine the interval times that the accents

would be perceived on the first or the second tone in the pair as a subjective rhyth-

misation. When the interval difference between pairs of tones is short, the accent

is judged on the first tone of the pair, as the interval increases past 220 msec, the

accent is more often heard on the second tone of the pair.

Their second experiment sought to determine if the accent on the first tone was a

result of perceived grouping or “an orienting response to that tone”. This orienting

response may have occured from the fact that a long interval preceded the first

tone [137, pp. 568], conditioning listeners to the phase of the rhythm. Only small

differences in results to the first experiment were found when preceding the very

first tone of the stimulus sequence with a longer tone, and the orienting response

was concluded not to be completely responsible. The third experiment sought to

differentiate the effect from “energy-integration”, which was hypothesised to be the

result of overlapping the decay of each tone with the attack of the next tone. Even

though there is a slight effect by increasing the articulation of the tones (onset to

offset interval), it was not considered to significantly modify perception. The fourth

experiment had the subject adjust the strength of the first tone until no accent

occured on the second tone. An increase of up to 4 dB was required to balance the

interval-produced accent, showing that the interval-accent is a robust phenomenon.

The experiment also showed the interval length was proportional to perceived accent

strength.
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Presentation rate made little difference to the subjective rhythm. Outside 115–

1800 msec intervals, when the two events are no longer perceptually linked, subjec-

tive rhythmisation becomes impossible [41]. Parncutt found grouping of isochronous

pulses into fours in preference to threes was general and independent of tempo in a

tapping task [130]. This is argued by Parncutt to be the result of more consonant

pulse sensations (strata) falling with the existance region of pulse sensation when

grouping by fours (at frequencies of 1/2, 1/4 and the pulse rate), than by threes (only

at 1/3 and the pulse rate frequencies). Subjective rhythmisation demonstrates that

the process of grouping temporal elements into longer term structures will occur even

when not supported by objective differences. This suggests the temporal intervals

themselves are responsible for accents and determination of rhythmic structure.

Objective Accentuation and Rhythmisation

Table 1 shows a summary of common objective differences introduced between

sounds by a human performer in order to induce grouping. The two most prominent

accentual forms are intensity and duration. Intensity is commonly a direct increase

in amplitude of the produced sound wave, but the nature of musical instruments

is such that increases in loudness are typically accompanied by change in timbre.

Plucking a string harder will change the spectral character of the sound as well as its

amplitude, with similar interactions occuring when performing on percussive, wind

and bowed string instruments. Thus, the musical performance concept of using dy-

namics to convey accents is, in fact, a multi-dimensional percept in the mind of the

listener, and of course, the performer. Such a synthesis of perceptual dimensions

constitutes a behaviour a computational model must address.

Timing Accent

Timing intervals can function both as accents, and as notable pauses between groups.

Interval lengthening will cause grouping with the interval demarcating the bound-

aries of one group and the next. When the lengthening is only slight, the accent is

perceived as being on the beat following the longer interval. When the lengthening

is large, creating a pause, the accent is perceived as on the beat prior to the longer

interval [41, 15]. Woodrow has shown that once can change a listener’s perception
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U Lengthening of an IOI between two events.
U Increase in intensity.
U Relative intensity profiles between beats.
U Variation in articulation (legato/staccato).
U Change in pitch or at extrema of pitch trajectories.
U Sources and destinations of harmonic progression.
U Difference or change in timbre or instrumentation.
U Onset synchrony between voices of same instrument.
U Onset synchrony between voices of different instruments.
U Density of events in time spans (fast runs, trills, tabla fills, grace-notes).
U Phrase final lengthening, rubato effects, deviations in time.

Table 1: Common objective accents used in performance.

of a rhythm from trochaic to iambic4 by shortening the IOI following an initially

perceived-second soft sound to make that soft sound be perceived as leading the

group [190]. Slightly lengthening the IOI following a sound conveys an impression

of increased intensity, forming an agogic accent; and reciprocally, intensifying a beat

creates the perception of the sound having a longer IOI. As well as onset to onset

(IOI) time, the onset to offset time, or in musical terms, the articulation,5 of a sound

is well known to create an impression of increased loudness [19]. Clarke proposes

that articulation only acts as accentuation, without a direct impact on the rhythmic

structure [15].

Lerdahl and Jackendoff’s series of “metrical preference rules” seek to codify the

location of accents using interactions between intensity and duration [84] (see sec-

tion 2.2.4). Their preference rules attempt to account for listeners’ placement of

accentuation on beats and suggest which assignments are most musically appropri-

ate within bounds of individual choices and plausible differences [55]:

4Traditionally, common rhythms have been described using ancient Greek terms of rhythmic
“feet” associated with the pacing of poetry describing the order of accentuation [41, 35, 112]. An
iambic rhythm describes a pattern (typically repeating) of 2 syllables, the first unaccented, the
second accented. The trochee is a rhythm of 2 syllables, the first accented, second unaccented;
the anapaest—3 syllables, 2 unaccented, followed by an accented one; conversely the dactyl—3
syllables, first accented, then 2 unaccented. The amphibrach describes groups of 3 syllables, with
the accented syllable between two unaccented.

5The term articulation is often broadly used or misused to describe rubato. In the course of
this thesis, it will refer to the onset-to-offset time interval.
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a Strong beats fall on elements with higher intensity or longer duration.

a Strong beats fall at the beginning of intensity changes (crescendo/decrescendo).

a Strong beats fall at the beginning of changes in articulation.

a Strong beats fall at the beginning of slurred notes.

Preference rules were proposed by Povel and Essens [136] concerning identical

elements separated by different length silences:

a A strong beat should not fall on a rest.

a A strong beat should fall on the first or last element of a sequence of identical

elements.

a A strong beat should fall on the same position in repeating phrases.

a Strong beats should occur in two beat or three beat meters.

The interaction between duration and intensity and their interchanging roles

thwarts interpretations of rhythm built purely from either durational or accentual

percepts. However, there is variation between the degree of effect these dimen-

sions have. Fraisse has surveyed research [41] showing durations were less varied

than intensity accents in performances of repetitive rhythms, with durations vary-

ing between 3–5%, whereas intensity based accents were varied between 10–12%.

Durational accent is also observed by Parncutt in his experiment testing metrical

accent perception [130]. However, he reported a contradiction to the rule of an

accented event preceding a longer IOI, finding for the case of listeners tapping to

a march rhythm, the IOI preceding an event had a stronger accentual effect than

the IOI following the event. Given the conformance of listeners to expected results

for nearly all other rhythms tested, experimental error seems unlikely, this tends to

suggest codifications of accent placement on the basis of durations may be missing

aspects of structure.

Pitch interactions with rhythm perception

In describing principal attributes of musical rhythm, it has been assumed there is a

separability between those dimensions and pitch. A more accurate characterisation
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of the situation would be that these dimensions are partially coupled. Krumhansl’s

review of interactions between melody and rhythm noted: “Clearly, both aspects

influence music perception and memory, but it is unclear whether they are truely

interactive or simply have additive effects. A number of studies show that rhythmic

structure influences judgements of pitch information” [78, pp. 297]. The recognition

of a metrical melody is facilitated by the correct recognition of the melody’s meter

and downbeat [131, pp. 150]. The meter and downbeat is considered as a pre or

co-requisite for the recognition of the melody.

Jones and others [68], manipulated accent structure and obtained effects on pitch

recognition. They proposed listeners allocate attentional resources over time (elab-

orated in [66]). They found poorer judgement of change in melodies when presented

in a rhythm different from a reference rhythm, and when melodies were presented

in rhythms which received local increases in their IOI’s. The later case rendering

incompatible rhythmic grouping at points either between or within melodic groups

[68, 65]. The results indicated rhythm is functioning to direct attention at specific

timepoints, aiding discrimination. Palmer and Krumhansl [125, 126] found “pitch

and temporal components made independent and additive contributions to judged

phrase structure. However, other results suggest interactions between temporal and

pitch patterns” [78, pp. 297]. Lerdahl and Jackendoff’s metrical preference rules

concerning variation in pitch have proposed that:

a Strong beats fall at large changes in pitch.

a Strong beats fall at changes in harmony.

a Strong beats fall at cadences.

a Strong beats tend to fall on lower pitches.

Handel has reviewed interrelationships between rhythm and pitch. He has sug-

gested that highest pitches in a sequence tend to be perceived as accented. In

alternative rhythmic contexts, the least frequently occuring pitch is likely to be

perceived as the accented element. Another candidate element for perceiving as

accented is the pitch forming the local maxima of a rising then falling melodic frag-

ment. Alternatively, the element following the local pitch maxima can function as

the accent when it forms the start of a melodic contour [55, pp. 388]. The con-

fluence of melodic (e.g. first note succeeding pitch jumps) and temporal accenting
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(succeeding rests) will lead to varying perceived strengths of the beats. Coincidence

of accents produces a strong beat and an emergence of meter. Points where melody

and timing accents do not coincide results in weaker beats which are of an irregular

pattern, and a meter does not emerge.

In summary, the dimensions of pitch and rhythm are clearly interacting, but there

are they are psychologically separable—we can perceive them separately, but they

interact as they build up our multidimensional perception of music. This produces

a need to isolate studies of rhythm to an interrelated set of perceptual features.

To limit the problem domain for a computational approach, the use of percussion

music has advantages. Percussive tones are often inharmonic, creating complex

pitch implications which avoids the overlearned grouping from melodic/harmonic

tonal cues.

2.2.2 Categorical Rhythm Perception

Evidence has been summarised by Fraisse [41], Povel [135], and Monahan (reported

by Dowling and Harwood [35, pp. 187]) of patterns in 2:1 ratios between elements

as being easy to perceive and reproduce. Analysis of examples of Western classical

music by Fraisse showed 80–90% of notes were in 2:1 ratio between note durations,

with the longer of the two durations in the range 0.3–0.9 sec. This spans the 600

msec interval prefered pace (see Section 2.2.6).

As noted in section 2.2.4, rhythms tend to be categorised into subdivisions of

small primes, typically 2 and 3, in a similar vein to tuning systems construction on

small prime limits [189, 132]. Sloboda has identified behaviours which are suggestive

of a categorisation (i.e quantization) of the duration of notes into the subdivisions

of multiples of two or three. He cites the inability of performers to imitiate an-

other exactly, the extraction of structure from rubato passages, and the difficulty of

perception of metrical deviation (under a threshold) as examples of categorisation.

Experiments by Sternberg and Knoll [172], also described by Sloboda [159], showed

skilled musicians were unable to accurately reproduce or perceive rhythms which

were non-standard subdivisions of the beat.

In tapping experiments, first performed by Fraisse [127, 41, 55], with later sup-

port by Povel [135], subjects simplified a variety of complex ratio rhythm intervals.
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In reproducing a rhythm, listeners reduced to just two interval durations: short (be-

tween elements, 150–400 msec) and long (between groups, 300–860 msec), demon-

strating a preference for 2:1 ratios.6 This categorical preference in production or

metrical categorisation also appears in statistical regularities of IOIs as notated in

scores of Western composers from the Baroque through to Modern eras. Frequency

distributions of intervals notated showed that just two durations were most fre-

quent, typically a crochet and quaver, forming either 1:1 or 2:1 ratios between IOIs,

with the shorter IOI the more frequent [41]. The preponderance of 2:1 duration

ratios suggests there are few relative levels of metrical hierarchy formed if IOI is the

only metrical cue. The candidate is chosen on the basis of economy of perception,

favouring simple duration ratios.

Sloboda has argued that categorical rhythm perception does not exclude percep-

tion of finer temporal structure, but he argues that it produces changes in “quality”

in the same manner as slight tuning variation produces the psychophysical percept

of “roughness”. This seems hard to accept when well trained musicians are able

to repeatedly reproduce their subtle variations in timing [157, 97] to demonstrate

rubato, whereas Sloboda’s listeners are distinguished between the majority that per-

ceive timing variation as simply a quality and others (i.e. musicians) who are able

to perceive it (by implication) in more structural terms.

The production of jazz “swing” rhythms in group scenarios are characterised by

highly accurate deviations from metrical time locations are possible by master play-

ers [2, 139, 17]. Desain and Honing’s positive results for a quantizer that stretches

over several time contexts [25], would appear to demonstrate the contextual basis of

the categories, and their inability to simply be reduced to nearest immediate neigh-

bourhood operations. It seems more likely that a “swung” rhythm is structured

as phase shifted inharmonic partials of lower frequency metrical strata, but that

this does not exclude the metrical stratum’s perception or production. Rather, this

produces a rhythmic richness and tension by the counterplay between the implied

meter and the stated events.

2.2.3 Grouping

A general rule common to all perception is that elements tend to be placed in equal

size groups larger than two elements [55]. Grouping in rhythm is the assignment

6This would be notated q e which forms a typical galloping rhythm when repeated.
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of temporal structure to an auditory stream, and is considered responsible for the

concept of musical phrases or motives. Grouping appears very early in life, and is

seemingly a spontaneous behaviour [41]. From the effects of subjective rhythmisa-

tion, grouping will occur even when not supported by objective accents, suggesting

grouping is an independent process reliant on timing, with objective accents con-

firming and increasing the perceptual strength of grouping boundaries.

Forming groups of 2,3 and 4 elements is significantly easier than groups of 5 and

7, suggesting that relative timing, economy of attention and representation [55],

and limits of auditory memory, rather than accents alone, are contributing to group

organisation. These longer rhythms tend to be grouped as subgroups of 2 and 3’s,

suggesting that hierarchies of grouping are spontaneously organised [35]. Fraisse has

estimated an absolute maximum of 25 successive sounds that can be perceived as a

unit [41].

The duration of groups are limited: “One can perceive groups of from two to

six sounds that correspond to the boundaries of our immediate memory or of our

capacity of apprehension” [41, pp. 157]. Fraisse reports an interaction between

the number of elements and their frequency of presentation, proposing the subject

attempts to strengthen the unity of the group when the number of elements to be

perceived is larger. This corresponds to the limits of subjective present reported by

Dowling and Harwood [35]. Thus the tempo of presentation affects interpretation,

rapid sequences caused listeners to place longer runs at the end of patterns, slow

sequences caused listeners to begin the pattern with longer runs [41]. The number of

chunks able to be held and processed reported by Dowling and Harwood agrees with

the general estimate of 7± 2 item immediate memory capacity by Miller [35, 115].

Two interacting principles of grouping have been identified: the run principle and

the gap principle [41]. The run principle proposes that the longest run of similar

elements will begin a rhythmic pattern. Listeners tend to group sounds of the same

intensity together. Runs of different intensity (or pitched) sounds will be organised

so that the longest runs are placed at the beginning or end of the pattern, never

in the middle. Objective accents are situated most spontaneously at the beginning

of the pattern [41, pp. 159]. Lerdahl and Jackendoff’s grouping preference rules

suggest that similar elements (identical, alternating, ascending/descending progres-

sions) will form a single group, with boundaries formed between dissimilar elements

[84]. Graduated parameteric changes induce a directed motion or tension/relaxation

towards some goal [15]. Povel and Essens’ rules proposed that groups are composed
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of elements close in time, that rests (silent durations) partition elements, and that

slurred elements7 will tend to be in the same group [136]. These last two proposals

are examples of the gap principle.

The gap principle proposes the longest interval terminates the pattern. Vos

identified three grouping preferences associated with timing accent and the gap

principle: Tones separated by short intervals are perceptually grouped together, long

intervals will preceed the first tone of a group (pauses in Fraisse’s terms, described

in section 2.2.1), and tones of a longer IOI are perceived accented, while short

IOI tones as non-accented [187]. Where a rhythm demonstrates the gap and run

principles with no contradictions, the pattern can be reproduced more easily than

in contradicting examples [41, pp. 169].

Higher-level grouping structures are bounded by repetitions of, or discontinuties

between, events [15]. The most predictable group sequences are the easiest to or-

ganise and respond to. Listeners’ ready identification of repetition allows them to

lock onto structurally simple patterns and thereby form groups. Woodrow has noted

that regularly recurring intensity accents will produce a grouping where the intensi-

fied beat forms the downbeat, while a regular longer duration will group the longer

duration beat as the end of a group [190, pp. 1233], another example of the gap

principle. Fraisse has observed the impact that priming effects of the first perceived

pattern will have on a stream of events. The initial pattern imposing its structure

on interpretations of later patterns [41, pp. 162].

A single change in an established rhythm affects the entire percept of the group-

ing. Subjects will spontaneously reorganize isochronous tone sequences to conform

to the run principle [55, pp. 407]. Studies of arhythmia indicate listeners will as-

similate rhythms towards an economy of perception, deforming a complex pattern

during reproduction to simplify it [41, pp. 167]. Where modes of accentuation are

in contradiction, modifying the strength of the competing accents typically leads to

reorganization such that the most salient accents form downbeats and conform to

run and gap principles [55, pp. 390].

Pitch relationships create a multidimensional range of element variations which

contribute to determining group boundaries, using enculturated tonal relationships

(for example cadences) to create between-group and within-group (as measures of

7Slurs are a notational device to concatenate durations, producing long IOI elements that often
cross metrical boundaries, Povel and Essens are thus proposing groups will extend past measure
lengths.
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similarity) relations. Competition occurs between these relationships to determine

the final grouping, with the final arbiter being the individual’s preference. Thus a

reorganization of grouping of a musical sequence will occur not only with respect to

the temporal principles described earlier, but with the melodic context. The first

performed element can thus be heard either as a downbeat or anacrusis8 depending

on it’s role within the melody which will only become clear after the performance

of some portion of the sequence.

Parncutt has identified both serial and periodic grouping [130, pp. 411], the

former describing the concatenation of motives, the latter to describe the form of

grouping of periodic accentuation, that is, the meter.

2.2.4 Meter and Pulse

The Functional Role Of Meter

Meter is the occurance of regular subjective or objective accentuation, whereas

isochronous beats only produce a sense of periodicity or pulse. A feeling of pulse

is necessary for meter or rhythm, but requires a sense of differentiation of beats

for these higher structures to arise. The regular alternation of perceptually weak

and strong beats produces a sense of meter [127], which Dowling and Harwood have

described as “the most basic level of rhythmic organisation” [35, pp. 185]. Clarke

describes this as “[playing] a crucial role in determining the stability of detailed

rhythmic groups” [15, pp. 221].9 Meter mediates rhythmic interpretation, measuring

time for the anticipation of forthcoming events and aiding organisation of equivalence

classes of time points. These are similar to octave invariance of pitch, the first beat

of the measure (downbeat) assumes a functional equivalence across time, aiding

similarity and memory judgements [127].

Much of popular ensemble music, i.e. Jazz, Rock and Folk, is characterised by

the meter being explicitly stated by performers in a rhythm section. In comparison,

solo performances or many examples of Western classical art music typically only

imply the meter, it being imagined in the mind of the listener without being heard.

8An initial upbeat, one or more notes preceding the first downbeat [84, 40].
9Meter is notated in Western music as a number of beats of a given duration within one periodic

pattern of regular accents—the measure. For example, waltz meter, 3
4 , describes three beats each

of a “crochet” or “quarter note” duration composing a measure group. A crochet can only be
assigned a physical time duration according to a specified tempo rate, typically specified by the
composer in beats per minute (BPM).
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According to Sachs [153] and Meyer [112], in examples such as plain chant, “rhap-

sodic fantasias of many different cultures”, or recitativo secco, pulse and meter do

not exist at all [112, pp. 103].

However, as Frigyesi has noted [43, pp. 59], rhythm described as “free”, “lacking

clear beat” or her term, “flowing”, is significant in non-western music, yet is rarely

ever totally lacking any metric orientation. Musical forms such as the opening

invocatory/introductory Hindustani alap [169] or Maghreb/Levant taqsim [153, 184]

sections often create a feeling of “a latent, slow beat behind the rhythmic flexibility

and a clear sense of periodicity” [43, pp. 66]. Likewise, such “free rhythm” sections

may be characterised as disjoint periods of meter undergoing rubato between periods

of single notes near the limit or beyond the subjective present.

In the music of India, the western concept of beat is matched by matra—the

basic time unit—being the minimum time for one spoken syllable [169]. A given

tal—a cycle, the meter or measure—is the grouping structure imposed on beats

and is typically less than 20 beats in duration but may be theorised longer. The

tal is subdivided, often in uneven and unequal concatenations. A tal indicates a

metric grouping and also a collection of rhythmic patterns, specifying a hierarchy

of rhythmic structures, of accent patterns, and of filled and empty beats. The

occurance of frequent silences at beat times means the rhythm of the tal can be

more implied than explicit and “aesthetic interest lies in the degree to which the

musicians and their audience can continue to follow the tal accurately across passages

of elaborate rhythmic improvisation in which it is only hinted at.” [35, pp. 199]. Here

a strongly conceived mental representations is required to provide musical meaning,

in the face of little confirmation.

The assignment of beat strength, the grouping according to strength, and the

effect of meter on perception of temporal structure must all be accounted for by a

computational theory of rhythm.

Interaction Between Meter and Grouping

While the concept of auditory grouping has it’s genesis in visual psychology anolo-

gies, meter is a concept evolved within music theory, having characteristic notation

and typical forms, especially 4
4
. However, meters which extend beyond theoreti-

cal conventions do exist, such as conceptions of hypermeter proposed by Rothstein

(noted by Parncutt [130]) as a perceived meter extending over time periods longer
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than that notated within a measure. The notated meter of a rhythm may not

necessarily be the meter the listener perceives.

Meter and grouping structures interact but may not always remain in phase, so

that important notes within a group may fall on metrically weak beats, with the

interplay between meter and grouping ultimately determining the rhythm perceived

[55], [112, pp. 103]. Meter will effect the perception of the entire sequence [55, pp.

396], Povel demonstrated that playing 12 element sequences with different meters

made identification of identical sequences impossible [136]. Handel demonstrated

difficult rhythms not conforming to natural (i.e metrically typical) accenting were

heard in terms of element grouping, rather than as a meter with a timing interval.

Clarke studied interactions between rhythm and meter by testing subjects’ per-

ception of a fixed rhythmic structure located at different starting points in two

different meters. The pitch material of the stimulus was first comprised of tonal

melodies, which were found to interact with the rhythm, and then with atonal

melodic lines. The results were the same, indicating interaction between different

musical properties [14, pp. 212]. He analysed variance between metrical context and

note position (independent variables) and IOI as the dependent variable “indicating

that the relative timing of notes is affected by metrical orientation” [14, pp. 213].

Tactus

Listeners tap to, and direct attention towards priviledged beats, and therefore a

subset of metrical levels, in a sequence. Tactus is a renaissance term adopted by

Lerdahl and Jackendoff [84] to describe the rate (tempo) and most salient hierarchial

level at which the listener will tap their foot in accompaniment to a rhythm. Desain

and Honing have described the tactus as the “level of metrical structure where

beats pass at a moderate rate” [28, pp. 145],[26]. As described in section 2.2.6, on

preferred timing rates the tactus will centre around a period of 600 msec. Parncutt

found that requiring subjects to tap on their perceived downbeat of a number of

percussive rhythmic patterns did not always result in subjects choosing the downbeat

conforming to music theory. Subjects would often choose the theoretical meter, but

phase shifted, such as choosing the fourth beat rather than the first in a measure of

a swing rhythm [130, pp. 422]. These findings reflect that listeners are selecting the

tactus as a frequency, from the possible periodic candidates which arise within the

rhythm.
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The Role of Repetition in the Formation of Meter

As noted in Section 2.2.3, repetition is a prominent aid to grouping and likewise

repetition of sequences is a strong cue to the formation of meter. Longuet-Higgins

and Lee [88], and Lee [82] have described the role of repetition of melody or rhythmic

pattern, perhaps subject to pitch or temporal transposition, in the formation of

meter. The nature of repetition in meter induction is an argument for a periodicity

based representation. The role of repetition in determination of tactus of rhythms

was demonstrated by Parncutt to not influence pulse salience [130].

2.2.5 Polyrhythms

In examples from African, Indian and Indonesian music [35], and examples of Jazz

performances [40], rhythmic structure is commonly organised in layers involving pat-

terns that do not subdivide from a single conductor’s beat, rather they are composed

of simultaneous lines in non-simple relationships. Handel has defined a polyrhythm

as “the simultaneous presentation of two isochronous patterns that do not share a

common denominator” [55, pp. 405]. African polyrhythmic organisation has been

characterised [71, 156] as comprised of the following concepts:

a Additive rhythm.

a The concept of off-beat.

a Hemiola,10 both horizontal and vertical.

a Cross-rhythms and inherent rhythms.

a The “standard pattern” or bell-line.

a A standard pattern in the form of timbral pattern.

a Motor pattern.

a Transaction—the specific polyphonic texture created by interlocking parts.

10Three beats in place of two or two beats in place of three [69].
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The Bell-Line

Several cultural forms of African polyrhythmic drumming (for instance the Eve of

Ghana) is characterised by the use of an asymmetrical “bell line” performed on a

high pitched bell acting as a time-keeper [93, 35]. The use of this bell line and

the difficulty of adequately notating or otherwise representing such polyrhythmic

performances illustrates that the concepts of single meter, tempo and tactus are not

universal. This clearly has implications for biologically inspired (e.g. connectionist)

computational models in that these musical ideas are derived from a less simple

underlying representation.

It is worthwhile to consider the counter-argument that a bell-line is a culturally

unique derivative from underlying universal isochronous representations. Ethnomu-

sicology in the field has determined that the bell-line is the intentional focus for

performers in this musical form. It remains to be tested that indigenous performers

will always be able to arrive at an isochronous re-interpretation of a recording of

their performance, which would be the necessary proof of universality.

Other forms of African drumming (for example, the Kasena of North Ghana)

do not use the bell line while exhibiting similar levels of complexity of pattern, this

is argued by Koetting [35, 71] to suggest an abstract beat pattern exists implicitly

in the structure of the performed rhythms. Clearly there is a common concept

shared between the musicians which allows ensemble performance to produce the

polyrhythm as a shared gestalt effect.

Analysing Polyrhythms by Fastest Pulse

The concept of fastest pulse is argued by Koetting [71] and Seifert [156] as far more

suited (least dogmatic) to explaining this music rather than using Western concepts

of rhythm, meter proportions and accents. Fastest pulse is considered to be the

beat with the shortest duration in the music considered, but this is too coarse in

consideration to our perceptual abilities illustrated in Section 2.4.2. Seifert proposes

a pace-maker or clock as the central concept of rhythm perception and therefore

implicitly declares a discrete structure to rhythm perception, in terms of the fastest

oscillation of the pace-maker.

Fastest pulse allows “a better understanding, modelling and notational repre-

sentation of African music as it sounds and has been recorded in the field” [156,

pp. 180]. While this may describe the process of creation and can suit the needs of
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analysis, it is also cautioned by Koetting [71] that fastest pulse does not seem to

describe how African timing is perceived. What it does suggest is the upper bounds

on a rhythmic sample rate, which Seifert concludes as 33.3Hz (30 msec interval)

[156, pp. 175]. It also suggests the applicability of a time sampling approach to

music which does not conform to a single meter.

The coincidence of important notes and strong beats is conjectured to aid in

attentional efficiency, allowing plans to be made for the forthcoming beats which

rationalises the limited attention which can be given to the task [64]. Handel has

suggested from his research using isochronous, dissonant polyrhythms that one of

the rhythmic lines, or every second element, is nearly always perceived as the me-

ter tapped to [55, pp. 404]. He found that tempo (see Section 2.2.6), pitch and

instrument/line intensity, and the particular combination of relative rates of each

line would influence which line was selected as the tactus. Likewise Olk and Schnei-

der found that Western listeners attending to synthesised typical forms of African

polyrhythms used a sub-pattern or line which is repeated to determine the length

of the pattern. They assumed the following signal features were important for non-

African listeners:

a Detectability of periodicity inherent in a given sound sample.

a Length of the period defined in quavers.

a Complexity of patterns played.

a Number of distinct instruments/voices.

a Relative density of events per time unit.

These finding may have been biased from the culture of the subjects. Conversely,

Koetting has argued underlying beat patterns in Kasena drumming are abstracted

from any performed line [35, 71]. In the Olk and Schneider study, they found only

those subjects with a background in African music attended to the traditional time

keeping instrument, the bell-line.

2.2.6 Tempo

Tempo is a musical term describing the rate of presentation of beats. Effectively,

the concept of tempo considered in Western music is the presentation rate of the
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tactus. That is, Western notions of tempo are simply the rate of a structurally

important rhythmic strata. In polyrhythmic music there does not exist the same

sense of single tactus, although the rate of fastest pulse (where it can be derived), or

average density of events per second can be used. However, regardless of culture, it

is possible to understand tempo as a presentation rate of a perceptually significant

level of beat. Examination of spontaneous, preferred and minimum perceivable tem-

pos establishes absolute time constraints on rhythmic processes. These constraints

provide measurable behaviours for automated rhythm perception.

Spontaneous and Preferred Tempo

Humans produce natural, spontaneous rhythms which are “a fundamental element

of human motor activity” [41, pp. 152]. Spontaneous rhythms have their own ranges

of tempo, which Fraisse asserts as ranging from 200 msec interval (5.0 taps/sec) to

1.4 sec (0.7 taps/sec), with the most representative value at 600 msec (1.1 taps/sec)

([41], see also [55, 35]). Spontaneous performed tempo can be distinguished from a

listener’s preferred tempo, but both have similar rates of approximately 600 msec.

Maximum accuracy in timing judgements, and reproduction with minimum over or

under-estimation also occurs at around 500–600 msec IOI [55, pp. 385]. Sponta-

neous rhythms of identical twins are very similar, whereas fraternal twins differ by

degrees similar to that of unrelated subjects, suggesting a biological basis for spon-

taneous rhythm [41, pp. 153]. However, the variation displayed among listeners is

too dynamic to imply a single rhythmic constant generated by a simple biological

clock.

Relationship of Preferred Pace With Tactus

Parncutt [130] found that the selection of tactus by a group of subjects for a group

of thirty-six tempo and rhythmic pattern combinations varied widely. The variation

of the tactus selected increased with rhythmic pattern complexity. He found a

distribution of preferences with a mean of 710 msec IOI and a standard deviation

which corresponded to an interval of 420–1190 msec. These intervals correspond

well with preferred tempo from other literature as compared in section 2.4.2.

Subjects were measured tapping to isochronous pulses at varying tempos. It was

found that preferred pulses will gravitate towards a moderate tempo. Noting the

tempo dependency of tactus, Parncutt has formulated an “existence region of pulse



CHAPTER 2. MULTIRESOLUTION MUSICAL RHYTHM 36

sensation” model, defining a range of periods within which isochronous sequences

are perceived as musical. Parncutt goes further to define that the existence region is

a Gaussian weighting function centered over the moderate tempo rate of 600 msec

IOI and is symmetric with respect to the logarithm of the pulse period between 400

to 900 msec [129]. Therefore the closer to a moderate tempo the stimulus is, the

more salient the pulse sensation.

Structure and Tempo Interaction

Clarke’s investigations of tempo in performance have shown an interrelationship be-

tween structure and tempo [14]. Music tended to be grouped into fewer units at

higher tempi, with slower tempo aiding segmentation at points of structural bound-

aries due to discontinuities in pitch and duration and structural parallelisms. Clarke

argues this tempo dependent grouping as due to the limitation of the subjective

present. This limit enforces segmentation by the performer and thereby causes the

subdivision of larger groups at points in accordance with structural properties of

the music.

Predictability of a stimulus influences the perceived pace, the more varied it is,

the shorter it is perceived [35], this is also known as the filled-interval effect [67].

Studies of time discrimination and reproduction of isolated intervals determined a

just noticable difference (JND) ranged between 5%–10% [190], however temporal

judgements for tapping to a regular beat (Povel [135]) determined JNDs of 2–3%

at 600 msec interval, with continuation close to this capability after the beat was

stopped. This was independent of musical training.

Povel has suggested a steady beat pattern is the cognitive framework used by

a listener to structure musical time and produce precise rhythmic patterns, with

the metrical structure functioning as a schemata. This would appear biologically

determined: “The dual structure of underlying beat and superimposed rhythm is

fundamental to the cognitive organization of music from very early ages.” [35, pp.

186].

Povel [135] found categorical beat assimilation towards a 2:1 ratio of IOIs when

listeners attempted to tap to a variety of stimulus ratios between 4:1 and 5:4, with

more complex rhythms being poorly imitated. He proposed rhythmic encoding

occurs in two stages: First a search occurs for a regular “beat framework” within

the preferred pace. This search is lower bounded by the IOI of 1.5 sec or 40 BPM
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tempo. Subsequently the rhythm is subdivided either equally or into long/short

durations of 2:1 ratio.

Dowling and Harwood [35] and Handel [55, pp. 404],[56] have reported that in

attempting to tap to complex polyrhythms, listeners typically tapped at the cross-

rhythm (combination of the rates) at slower tempos (3 secs/measure), and selected

one of the component rhythms at higher tempos (1.6–1.2 sec/measure). Listeners

rarely followed component beat patterns with IOIs greater than 800 msecs apart.

The prefered pace appears to influence the subjective rhythm, causing listeners

to shift attention to component rhythmic lines with shorter intervals when they

encounter a slower tempo. The result is to attempt to remain close to the preferred

(600 msec) rate. As tempos increased, listeners chose either the cross-rhythm or a

component pattern which was closest to the preferred pace of 600 msec IOI.

2.2.7 Expressive Timing and Rubato

Expressive timing is an evolved performance practice known by the Italian term

rubato—literally “robbed time”. It is also termed ‘micro-tempo’ in computer music

and ‘local tempo’ in music psychology. It is effectively a local tempo change from

event to event as the piece progresses. While it has an emotive character, especially

in the style of Romantic music where it has its extremes, expressive transformations

on a canonical rhythm derived from a score are intended to highlight the grouping

structure [15, 26, 55], [28, pp. 145]. The expressive timing variations alter the

structural relationships between beats at different levels, within the bounds of the

abstract structure, which the expression (intentional deviations from metricality)

seeks to accentuate.

The expressive deformations from metricality produce distinct effects, which de-

pends on a listener’s enculturated experience. Bengtsson and Gabrielsson [4] showed

that time intervals needed to be uneven in order for listeners to perceive them as

musically “correct”. Using listener preferences for alternative timing deviations of

the same folk tune (the test data), equal preferrence was given to ratios of 1.7:1.0

through to 2.0:1.0 against other ratios outside these bounds. Within these ratio

bounds, the rhythmical motion of the piece is affected by the particular ratio cho-

sen. This would seem to be an interplay between categorical perception tendencies

to simplify, and a tendency to accelerate or ritard the rhythm as a rubato.

Forms of expressive timing can be identified as ritard/accelerand behaviour,
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phrase final lengthening or more generally structural/metrical contexts. Tradition-

ally these have been modelled as tempo curves. These concepts are now considered.

Ritards

Common musical theory has adopted a number of Italian terms to describe forms of

expressive timing, among them accelerando and rallentando as standard structural

elements describing common monotonically increasing or decreasing rate of beats.

The term ritardando describes the characteristic slowing of a piece, particularly at

the concluding measures.

Kronman and Sundberg have used regression analysis to model the final ritar-

dando in musical performances as explicitly “ . . . motion under constant nega-

tive acceleration” [77, pp. 1941] (i.e linear tempo decrease). They found this pro-

duced a reasonable approximation for the example data taken from performances of

Bach preludes (“motor music” where all notes were equal value, i.e quavers [174]).

Longuet-Higgins and Lisle [89] also found linear tempo changes within a single ac-

celerando/ritardando produced the most natural sounding rubato.

This approach of relating ritard to physical motion is reflected in the musical

terminology above and is popular in research [104, 38], but has been recently cri-

tiqued by Desain and Honing [32]. While they complement musical models based

on human body functions and constraints, they caution against physical motion as

a model as it does not reveal the underlying mechanisms. “A good approximation

is not neccessarily a good explanation.” [32, pp. 459].

They demonstrate final ritards are dependent on the global tempo, and argue the

dependency of ritards on the structure of the piece. For this they argue that passages

of many isochronous notes allow for deep rubato, while ritards of few notes with more

elaborate rhythmic structure will have less radical deviations from metricality. This

is necessary not to break the rhythmic categories. This intricate dependency is not

reflected by physical motion (linear deceleration) models.

It is telling that given significant research on this issue, there is still considerable

debate regarding the ritard behaviour. This suggests that current analysis models

are incomplete, and that further development of analysis methods are required to

build a better picture of such behaviour. A method of describing rates of events

changing over time is required without pre-suppositions of frequency characteristics.
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Tempo Curves

The ritard is one example of expressive timing that has been attempted to be repre-

sented by a tempo curve. Tempo curves are profiles of beat-by-beat time deviation

from a canonical metrical grid. Local tempo is represented computationally as an

event to event ratio of score time interval to performance time interval

L = G×
S

P
, (1)

where L is the local tempo at the time of each beat, G is the global tempo, S is

the score time interval and P is the performance time interval [28]. Thus a note

performed longer than in the score will be a value below the global tempo, and a note

shorter, a value above. In computational representations of the tempo curve, points

are connected by straight line-segments, or alternatively by spline interpolation (to

create smooth transitions between tempos).

Desain and Honing’s entertaining “Tempo Curves Considered Harmful” series

[28, 26, 27] made important recommendations regarding the limitations of tempo

curves. They argue a tempo curve conveys a false impression that time can be

abstracted to become independent from the events that mark it. This fallacy is

demonstrated by attempting to apply the tempo curve from one piece to a related

piece (such as a variation on a theme). Representations of expressive timing using

tempo curves miss the essential link with the underlying musical structure—that

expression can only function with respect to a structural base. Desain and Honing

make the point that systems using tempo curves have become ubiquitous, but have

propagated the erroneous assumptions that they make musical sense, that they are

useful computational rhythm representations, and that they are a mental represen-

tation held by the listener or performer.

Tempo Dependency Of Expressive Timing

In the same manner as their critique of ritard models (Section 2.2.7), Desain and

Honing demonstrate the problem of tempo curves being unable to be applied from

one performance to another performance of the same piece recorded at a faster global

tempo.

In a further study [30], Desain and Honing produced experimental evidence con-

tradicting an earlier study by Repp [143] which argued that expressive timing scaled
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proportionally with a piece played at various tempos [30]. They showed that for a

piano piece performed at a range of tempi chosen by the performers within their

skills, a significant interaction between tempo and IOI existed. This was achieved

by measuring the IOI of grace-notes, and separately, by the correlation of expressive

timing profiles across tempi. The conclusion was drawn that expressive timing was

non-proportional to tempo, contradicting the earlier hypothesis of expressive timing

being relationally invariant to tempo. Desain and Honing have not yet proposed a

model of non-linear relation between tempo and expressive timing.

Phrase Final Lengthening—Expression from Structure

Measures at the ends of groups (phrases) also tend to be extended by a short ritard

and are termed phrase final lengthening. Clarke analysed the variance between IOI

as the dependent variable and metrical context and note position as the indepen-

dent variables. He found “significant interactions between metrical context and note

position, indicating that the relative timing of notes is affected by metrical orienta-

tion” [14, pp. 213]. He identifies three principles (which may interfere or promote

each other) causing this interaction:

a Metrical strength accounts for the most significant variance in note length.

The stronger the metrical position (its position in the metrical hierarchy),

the greater the lengthening of the IOI, a weaker metrical position results in

a shorter IOI. The relationship to metrical position may be direct (agogic

accents) and indirect (lengthening of notes completing groups).

a Less significantly, notes completing phrases or groups (at varying structural

levels) are lengthened.

a Least significantly, notes immediately prior to a structurally important note

are lengthened (delaying the onset of the important note).

Palmer studied the effect of interpretation of phrasing on performance of ro-

mantic period piano music by comparing timing of expressive performances with

the performer’s intended grouping structure [124, 123]. Like Clarke, she also found

slowing towards the end of each phrase with a characteristic over-corrected return

to metricality. In comparing performers who were asked to play “expressively” and

“mechanically” (lacking expression), rubato was found to no longer match phrase
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structure boundaries on the “mechanical” version (which still contained some per-

former variation from strict isochrony). By comparing the expressive timing of a

performer with the intended phrasing of others, Palmer found only a match between

a performer’s phrase final lengthening and that same performers intended phrasing,

as previously marked by them in the score.

Parncutt’s expressive timing model [130] adopts a proportional increase in the

degree of slowing in the temporal vicinity of an accent with the strength of that

accent. He defines structurally important beats as “events preceding relatively long

IOIs, on rhythmically strong beats, at the start of phrases, at harmonic dissonances,

or at phrase or structural boundaries” [130, pp. 447].

Todd [97, 98, 109, 99] found that the importance of a phrase corresponded

roughly to the degree of lengthing of phrase endings. He also proposed relationships

between intensity and tempo that aid in phrase segmentation [100, 103], however

there are several musical examples which run counter to this positive association.11

Bengtsson and Gabrielsson found for the music they examined (a short waltz), that

lengthening of phrases occurs where endings of phrases at different structural levels

coincide [4]. Timing deviations occur at each structural level and the timing of the

performance is the combination of the timing of each level.

Most models of expressive timing have linked the generation of rubato to a single

structural entity (immediate event intervals [173], metrical units [16], and phrase

final lengthening). Desain and Honing suggest that future expressive timing models

should be linking rubato to several structural entities, both surface features and

deeper structural entities [28].

Summary of Expressive Timing

Two cases of expressive timing are apparent: shaping, occuring over the relatively

long duration of groups or measures, and localised deviations such as agogic accents

or grace notes. While these terms are old [141] and may seem inexact, they can be

understood as follows.

Shaping of phrases occurs over more than one beat and can be defined as acceler-

ation based deviations from a canonical beat. These changes of rate (whatever their

linear or non-linear character), are such that a grouped phrase of beats undergo

11For example, the introductory motif of Heitor Villa-Lobos’ Prelude Number 3 is performed
with a simultaneous ritard and crescendo. This is opposite to the “faster and louder” association
observed by Gabrielsson [45] and adopted by Todd [100].
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some modulation of the underlying beat frequency, pushing and pulling beats away

from metricality. This modulation of frequency is most apparent when the shaping

occurs over motor music, a canonically isochronous series of note events. This also

defines the modulation rate to be significantly lower (at least an octave lower) than

the beat rate.

Localised deviation or agogic jitter can be considered to be deviations from

metrical location which are short term, i.e highly localised, dragging or leading a

single beat but not the surrounding beats. This could occur with respect to lower

frequency modulation, for instance, all but the subject beat are correctly ritarded.

From the perspective of rhythmic frequency this beat deviation occurs at a higher

frequency than the canonical beat rate. The reoccurance of the agogic accent at a

regular number of beats would create a rhythm frequency at a rate lower than the

canonical rate. This can be considered to be grouping using agogic accents.

The issue of culture arises in the consideration of expressive timing, in this

case the difference between expressive timing within the tradition of Western music

[158], in comparision to Jazz (and less prominently popular music) where the meter

is strongly implied by the rhythm section. The notion of swing has become a (more-

or-less) theoretical concept [139, 17]. However, it seems to demonstrate the same

general forms of expressive timing, shaping [2], and localised deviations [139, 6, 7, 8]

as Western classical music. On reflection, this appears plausible as jazz has a clear

heritage to Western common practice music as much as to earlier Afro-American

music.

2.3 Rhythmic Models

2.3.1 Rhythmic Strata

There have been a wide range of representational approaches to musical time, rang-

ing in their degree of association with music theory and performance practice, and

in their conformance to results of perceptual research. Recent proposals have explic-

itly modelled the concept of a hierarchy of temporal levels. Yeston has argued for

the conception and representation of rhythm as a hierarchy of strata [192], each of

increasing timespans, with proportionally decreasing pulse rates. Yeston considers

his model to be an analysis of musical structure, rather than as a direct perceptual

model. Meter is conceived by him to arise from accents created by the interaction
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between hierarchical strata levels [192, pp. 66]. Other researchers have also used

terms such as a level of motion, hierarchical clocks [136], a time level [15], level of

pulsation [127], rhythmic level [147] and in a wider sense, pulse sensation [130], to

describe all levels of time evoked when listening to a musical rhythm, either including

or excluding expressive timing.

While hierarchical stratification is a widely held view, it does not seem that

all levels are equally salient. Certainly the tactus, typically the rate of beat that

corresponds to the notated meter, holds a significant perceptual position. Clarke

identifies distinct levels of musical time, demonstrating the levels differ significantly

between event relationships within a group, and between groups [15]. He charac-

terises three categorical levels of temporal structure (see Figure 3): a “low” level of

expressive timing; an intermediate level of “canonical” relationships between single

notes and phrases upto 3 or 4 measures, including meter; and a “high” level of form,

describing long term group structures of 4 to 8 measures, considered by Clarke to be

the functional limit of listeners ability to construct high level temporal frameworks.

Levels range respectively from “lower” strata which are more ornamental, less

structural, and of shorter time spans, to the “higher” abstract stratified levels, of

longer time spans, having fewer, more significant events, and influencing bound-

aries between groups of events, metrical structures, durational proportions, and

directed motion within groups. Levels are argued to not always be perceptually

distinct: “Continual cross-connection and transformation between levels blur their

boundaries, and generate a structural network that contains a complex mixture of

hierarchical and associative relationships.” [15, pp. 212].

2.3.2 Hierarchical Theories of Meter

The common Western musical practice of considering meter as a hierarchy of binary

and ternary beats [127] has been proposed by Steedman as a “principle of consis-

tency” in listening [171]. As subjects can only judge two or three tone durations

accurately, Handel conjectures that there may be perceptual limitations which ex-

plain the reason for the predominance of duple meter in Western music [55, pp.

403]. London has also noted a binary bias to Western rhythm, particularly in dance

music, beginning with the baroque era [85]. This is hypothesised to be the result

of movement constraints of normal human bipedal motion and is used to explain
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Time

Time
Level

high:  abstract,
longer time span,
fewer, more
significant events.

low: ornamental,
less structural,
shorter time
spans. "Now"

Figure 3: A time level/time schematic diagram of Clarke’s proposal of categories of
temporal levels in musical time.

the scarecity of triple meter in Western music. However, the argument for a bio-

logical motor basis seems less plausible considering asymmetrical and polyrhythmic

non-western music.

Lerdahl and Jackendoff have proposed their “Generative Theory of Tonal Music”

(GTTM), applying a theory of generative grammars as a descriptive mechanism

for musical relations [84]. They propose both a metrical hierarchy and a grouping

hierarchy. They propose the meter hierarchy as being responsible for the assignment

of importance of beats in short time spans. Over longer time spans, the grouping

hierarchy is responsible for the organisation into phrases, themes and sections. The

perception of meter and of grouping occurs simultaneously, and it is conjectured by

Handel that separation of the two percepts is impossible [55].

The grouping hierarchy describes the organisation of beats into levels of phrases

(groups) of increasingly longer timespans. According to GTTM, “meter preference”,

“grouping preference”, and “well-formedness” rules are required to resolve the am-

biguity of the meter and grouping hierarchies from many possible interpretations of

a given series of notes and intervals. The preference rules attempt to predict the

perception of one of the well-formed meter hierarchies and one of the well-formed

grouping hierarchies.

The well-formed meter hierarchies are musically appropriate ones, i.e. meter

has evenly spaced beats at each level and synchronises with beats at a lower level.
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For Western music, beats are equal groups of two or three timespans of lower level

beats. The coincidence of beats within meters between different levels produces the

perceived strength of a beat. Well-formed grouping hierarchies enforce groups to

be composed of adjacent elements, typically with an element existing in only one

group at a single level [55, pp. 393]. Lerdahl and Jackendoff’s model is informally

descriptive, rather than computationally implementable and operates, like Yeston’s

model, on a canonical musical structure derived from musical notation of a piece.

Enculturated knowledge of meter can be assumed to play a role in its perception.

Sufficently abstract “context-free” knowledge of the temporal functions at work

in Western music provides a mental framework (or schema) to interact with the

“context-dependent” knowledge of the unfolding music to produce the conception of

meter [127, pp. 730]. This is reflected in Longuet-Higgins’ model [87] by an inertia

for changing meter in the face of conflicting evidence. Longuet-Higgins and Lee [88]

used only relative duration cues and the position of the durations within the bar in

their model of beat induction.

Palmer and Krumhansl [127] have demonstrated that the frequency of occurance

of events at a given position within the measure (that is, within a metrical context),

sampled from a range of classical pieces, matched listener choice of goodness-of-fit.

The experiment consisted of presenting a probe tone following presentation of a series

of “context” beats. The context beats were imagined by the subject to be the down-

beat of a meter. The probe tone would then fall on one of the semiquaver locations

within the imagined measure. Using their findings,12 Parncutt [131] has constructed

templates of meter and pulse by proposing weightings for each semi-quaver location

within a measure. The pulse template is argued to enable the recognition of events

as periodic, from a common source, and thus the period. Additionally it is argued

to be a universal construct, whereas the meter templates are argued to be culture

specific, and constructed for Western music. Matching of a stimulus to a template is

characterised in two forms: “jumping” and “sliding”; describing initial recognition

and ongoing matching of stimulus to a template respectively. Sliding is said to occur

when tracking a rubato, in the case of a metrical template.

Parncutt proposes a model [130] for determination of perceptual saliences of

rhythmic strata. Occurance of consonant pulse sensations two or three times slower

or faster than a target pulse sensation is proposed to enhance perception of the

12Noting discrepencies of their findings to the position of the downbeat of 2
4 from music theory.
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target. The salience of a meter is argued to be proportional to the sum of consonant

pulse sensations. The meter chosen as the tactus is therefore argued to be the one

with the highest salience. Parncutt hypothesises a lower limit of two consecutive

events as the point at which a pulse sensation will no longer be salient, unless

supported by consonant pulse sensation of higher or lower frequency [130, pp. 445].

This constraint is not included in his model, however. In addition, this may not

conform to an assumption he makes [130, pp. 434] that two events are sufficient to

give rise to a pulse sensation.

The perceptual salience of each pulse level was derived by experimental evidence

from subjects tapping along to experimental rhythms and measuring period and

phase of each tap rate [130]. Metrical accent is represented in Parncutt’s model

as arising from a two stage process, with metrical accents determined from the

pulse saliences, which, in turn, are determined from durational (timing) accent [130,

131]. Metrical accent is therefore computed with a linear summation of all pulse

period sensations at each time point. According to Parncutt, there is a direct

correspondance between metrical accents and temporal categories.

2.3.3 Models of Grouping and Metrical Structure

More than one position exists regarding the relationship between grouping and me-

ter. Questions concern the evolution of grouping during listening, and the role of

accents—whether they define meter, or whether meter gives time points an identity

independent of objective accentuation [127]. The traditional perspective (Meyer’s,

for example [112]) is that meter and grouping are intrinsically linked and both arise

from the pattern of accents, with groups formed by “affiliation” of unaccented events

to each accented event [127, pp. 729]. The grouping may be non-regular while still

being within a given meter, and may vary in clarity at each time point. According

to Meyer [112, pp. 103 and 147], a meter can be created without also creating a

sense of rhythm due to ambiguous grouping. A listener’s impression may only be of

a sequence of repeating strong and weak beats.

Conversely the GTTM viewed meter as the organisation of time-points result-

ing from accent, whereas grouping was seen as a separate organisation of events

without reference to accent [84]. Lerdahl and Jackendoff proposed a time span

reduction (TSR) as a generalized model of interaction of grouping structure and

metrical structure, representing the rhythmical structure of the piece. One TSR
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well-formedness rule is that there is a most important event in a given time span,

chosen from important events in shorter time spans covered by the parent time span.

This forms a strict hierarchy of structural importance. This structure can form top-

down expectancies of metrical accent that allows for syncopation when objective

accentuation contradicts the expectation.

Longuet-Higgins and Lee [88] found the correct metrical interpretation could be

achieved by weighting each event according only to its relative duration cues and the

position of the durations within the bar. This explicitly distinguishes accentuation

from the cues that are commonly thought to be accents, that is, dynamics. Palmer

has noted that “duration and intensity cues are influenced in both composition

and performance by many factors in addition to meter . . . often these cues are

ambiguous, interactive, or simply absent: yet the listener still determines the meter

correctly. Therefore it is unlikely that sensory cues alone determine the meter” [127,

pp. 730]. In the opposite camp, meter is not wholly responsible for accentuation.

Palmer and Krumhansl [126], Clarke [14], Jones [66], Jones and Boltz [67] describe

conditions producing accent perception, regardless of prior establishment of a meter.

2.3.4 Models of Expressive Timing

There have been many approaches to modelling expressive timing, these are well

summarised by Parncutt [130, pp. 447]. Two categories of models can be distin-

guished: Generative models attempt the generation of expressive timing from a

structural description while interpretative models attempt the interpretation of a

performed expressive gesture to produce a structural description. Examples from

both categories which reflect a multiple time scale model are detailed here.

Generative models attempt to determine deviation of events from a canonical

description of the intended structure of a piece, typically some annotated encoding

of the musical score, or a more abstract structural description. Clynes composers

pulse [16] model determines all expressive timing from metrical units, effectively a

two level (measure and beat) analysis. As investigated by Repp [140], meter does

not completely describe expressive timing, especially in romantic music where phrase

structure is communicated with deep rubato and meter is highly variable in local

tempo.

Todd’s model uses tempo curves linked to phrase structure [100, 98]. His ap-

proach is to look at the local maxima of the tempo curve and relate the strengths of
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the peaks directly to the structural boundary strength [97]. From the tempo curves

he determines an acceleration/deceleration profile over the length of a phrase. The

profiles occur over a nested hierarchy of phrases, combining to produce the final

tempo of the entire piece. Todd considers expressive timing in terms of kinematics

of motion (see Sections 2.2.7 and 2.2.7) in a 2-D space, with metrical position rep-

resenting space in terms of beats (discretised time when with respect to a tempo)

[104]. He characterises timing as a series of connected trajectories or timing seg-

ments. Changes in sign of the acceleration value is used to indicate segment bound-

aries. The piece then consists of connected linear tempo segments of typically 2 to

7 metrical units.

As an example of an interpretive model, Desain and Vos used partial autocor-

relation [24] as an analysis tool of POCO [59], that focused on expressive timing.

A similar autocorrelation was also used by Brown [12]. Autocorrelation was aimed

at identifying structural levels, rather than microstructural deviations. Deviations

from metricality were assumed to stem “from a multiplicative combination of tempo

factors at several structural levels and the exact metrical note durations in a the

[sic] score” [24, pp. 357]. Assuming the musical structure to be analysed is homo-

geneous, Desain and Vos searched for periodicities in the tempo curve,13 with the

periods being interpreted as the lengths of the structural components. Limitations

with the autocorrelation approach identified by Desain and Vos include that no

phase information of the rhythm is retained.

Addressing the tempo curve problem, Honing and Desain’s system “Expresso”

[60] interprets expressive timing from a performance with respect to human au-

thored structural descriptions and a quantized note list [29]. This last requirement

does imply the quantization must correctly deduce the intended score, which shifts

the burden of accuracy in expression interpretation onto the quantizer. Assuming

a robust quantizer [25], it is possible to create different levels of the structural an-

notations. Transformations such as tempo change or adding/removing notes can

then be made with respect to higher level (longer term, more abstract) structures.

These transformations can then selectively respect the invariability or modifiability

of other structural levels.

Tanguiane [177] defines rhythmic perception as separated into high and low-level

configurations, consisting of tempo curve, and correlated rhythmic patterns of time

13See Desain and Honing’s reply [33, pp. 113] to Smoliar’s criticism of autocorrelation of expres-
sive timing [167].
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events, respectively. High-level configurations concern time relationships between

rhythmic patterns. He assumes low-level repetitious patterns form recognizable

references that are used to track tempo by the listener.

Widmer’s research in the learning of expressive timing used the score of melodies

and the tempo curves of individual performances [188]. Several increasing longer

term structural levels are determined from the score by symbolic matching. Sur-

face patterns, a metrical structure and a grouping structure of a form similar to

GTTM [84] are computed. Expressive patterns of dynamics and rubato (from the

tempo curves) are then learnt using an “instance-based” algorithm, generating pro-

duction rules. These expressive patterns are of prototype forms such as ascending,

descending, and ascending-then-descending. The production rules are then used to

synthesize appropriate dynamics and rubato behaviours at points in a new musical

score when the production rules are triggered.

Parncutt’s pulse salience model [130] examines a whole rhythmic sequence and

is currently restricted to cyclically repeating rhythms. A pattern matching routine

models the perception of pulse and produces a set of concurrent pulse saliences. The

salience being defined as the probability of the pulse being a tactus. Phenomenal

(i.e. objective) accents (including duration accents) contribute to pulse salience

using a non-linear “saturation” function. Measures of pulse salience are weighted

by absolute tempo (“existence region of pulse sensation”), with 600 msec interval as

the maximally responsive “moderate pulse period”. In this model expressive timing

is suggested to always follow the behaviour of slowing local tempo close to metrical

and structural accents.

Todd’s auditory-motor basis of rhythm perception [104] is composed of:

a An auditory periphery, simulated with a cochlear model and hair-cell array

simulation.

a The “rhythmogram” time-domain process [103], which involves convolving a

bank of low-pass one-dimensional, causal filters with the auditory nerve re-

sponse and then finding peaks in the first derivative of the rhythmogram

response. This “carries out a temporal segmentation of the activity in the

auditory nerve” [104, pp. 1946].

The rhythmogram is performed for a number of spatial scales and the resulting

multiple channel peaks are recombined to allow searching for coincident peaks
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across channels. Extrema which are “temporally coincident” across channels

are assigned a single signifier - they are assumed to be a single phenomenon.

The result is a hierarchical structure which reflects the effect of phrase shaping

and grouping.

a Using bandpass rather than the lowpass filters, periodicity analysis is per-

formed. This produces an association between each event and a number of

harmonics. Todd placed the conditions on periodicity analysis that an abso-

lute change of tempo is piece-wise continuous and that the rate of absolute

change of tempo is less than one octave per onset. The ratios of the harmonics

will be invariant.

a A sensory motor feedback filter (consisting of two peak bandwidths, for foot-

tapping, capturing periodicity, and body-sway, capturing gesture) used to pro-

mote the metrical harmonics and therefore select the tactus. In Todd’s model,

these are achieved by boosting the response from the filters representing 1.7Hz

and 0.2Hz respectively. The harmonic closest to the foot-tapper resonance

(1.7Hz) “will be the one favoured for the tactus” [104, pp. 1947].

2.3.5 Connectionist Oscillator Models

Neural oscillator entrainment models use a hierarchy of oscillators to effectively re-

spond to periodicities in the rhythm within frequency bands defined by the dynamics

of the phase locking behaviour [80, 114, 122, 47, 183].

BeatNet [114] consists of idealised low-frequency oscillators of different beat pe-

riods which align their periodic impulse (“ticks”) with event onsets. Large [80]

identifies its inability to deal with timing variation, due to the use of idealised os-

cillatory units. However, it may be that using sufficient inharmonic oscillators of

short-term activation would enable recognition of variable timing.

Large proposes and reports [80] a dynamic system that synchronises a bank of

neural oscillators in a range of oscillator ratios to the performed rhythm’s IOIs.

The stimulus of a “basic oscillatory unit” is a series of normalised impulses (dirac

functions) for the onset of each note, without an intensity encoding, derived from

MIDI or from acoustic signal amplitude. The output of the unit is non-zero for only

a small portion of the period, which creates a region of temporal expectancy—a

time period during which a stimulus pulse is expected. The unit adjusts its phase
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and period in response to stimulus to minimise an error function measuring the

difference between the expected stimulus and the occuring stimulus. Updates to

phase and period are proportional to the partial derivative of the error function.

This functions to lock its output pulses to the period of the stimulus. The phase

adjustment is scaled so it is independent of the oscillator period.

The frequency (period) of the oscillator also tracks using a gradient descent (error

minimisation) approach, with limits placed on the period. The unit synchronises

its output based on a periodic train of input pulses; to operate in a network, it

will encounter stimulus frequencies outside its response region. Frequency tracking

is demonstrated to act both as a memory for a periodic stimulus and as stabiliser

against timing deviations. The resonance theories described by regime diagrams

indicate the allowable beat-periods, according to their sensitivity to timing variation

and therefore (it is argued) well-formedness rules of metrical structures [84] can be

expressed. Perception of polyrhythms is limited by the number of mode-locks that

a system can contain.

Large’s oscillator bank is claimed to model the perception of metrical structure,

that is, the inducement of the beat (tactus). The network of neural oscillators is

intended to be interconnected in a self-organising behaviour. These entrain simulta-

neously to the periodic components of the rhythm at different timescales. Metrical

units are said to manifest themselves as the alignment (or the relative phase) be-

tween adjacent levels of beats.

While phase locking is reported in the neurobiological literature, Large’s use

of oscillatory units is higher than the neuronal level, rather at the level of meter

perception, using ratios more complex than 1:1. Large suggests the behaviour of

the units mimic the emergent behaviour of a wide range of possible brain structures

[80, pp. 202].

Using non-linearly coupled oscillators (one oscillator being the rhythmic perfor-

mance input, the other the metrical clock), the coupled oscillators have an inertia

controlling their stability (coupling strength) at chosen ratios (the dressed winding

number) from their “bare winding number”.

Due to the delay in reestablishing a phase lock, musical beats can’t be adequately

modelled using phase locking entrainment alone. Frequency tracking is used to alter

the period of the oscillator rather than simply the phase. On removal of the driving

signal, the frequency tracking oscillator will retain its last driven period until the

stimulus reappears. Entrainment in Large’s model consists of perturbing both phase
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and frequency of the oscillators only at certain points in the rhythmic pattern. This

is said to effectively isolate a single periodic component in the incoming rhythm [80,

pp. 190].

Experiments performed by Large are by exposing a small system (six oscillators)

of unconnected oscillators to MIDI piano performances. Each oscillator is frequency

limited to an octave and a third, there are two octaves of response, with a minimum

period of 600ms, maximum period of 2560 ms, distributed as:

pi+1 = 2
√

3pi

where pi is the period of the oscillator.

Large assesses the performance of the oscillators to isolate a periodic component

of the rhythm without any phenomenal accent information. The oscillators corre-

spond to quarter and half note timings, however it is not explained why eighth and

sixteenth note timings are not stabilised, given there are a large number of dotted

quarter, eighth and sixteenth notes, one half note and 9 quarter notes in the reported

example. Perhaps this is due to the variability from performance of the timing of

the shorter duration notes.

An oscillator unit’s preference for a periodicity is an interrelationship between:

a The unit’s point of maximum expectancy.

a Spacing of event onsets around the expectancy point.

a Width of the expectancy region.

a Absolute amount of adjustment to phase and period in response to each onset.

Wide response regions produce a preference for simple ratios and narrow tem-

poral response regions allow more complex ratios [80, pp. 203]. It may well be that

this prevents stability at shorter timescales in the example reported.

Typical versions of such models are not actually interlocked between hierarchies

[80, pp. 198]. This suggests that independent stratified layers of rhythmic times

produced by a time-frequency analysis will equally reveal the signal on which the

oscillators are adapting to and their behaviour. While the oscillator entrainment

approach can reflect beat tracking, it is not clear if the oscillator dynamics can show

longer term structural entities.
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A problem with neural oscillator models is their assumptions of phenomenal ac-

cent to display “appropriate” behaviour. Large concludes: “In summary, modelling

the perception of metrical structure is difficult, in large measure because of prob-

lems arising from timing variabilty in musical performance . . . Entrainment models

must have the ability to “pick” component periodicities out of a complex rhythmic

pattern in spite of missing, ambiguous, or misleading phenomenal accent informa-

tion” [80, pp. 186]. The inherent problem is stated—the representation of rhythm

as periodicities—but the timing variability is characterised as noise rather than as

explicit, non-verbal communicated knowledge.

Desain’s decomposable rhythm perspective has similarities to a wavelet approach

[23]. He forward projects expectancy curves in time which are composed from Gaus-

sian sections with parameters determined from the ratio of previous time intervals.

The curves are also weighted by an absolute time component, creating tempo depen-

dency. The expectancy curve is calculated by summing the expectancies determined

from all of the possible intervals between all onsets. Each time point of highest ex-

pectancy positions a time-window within which beats are identified.

2.4 Summary of Findings

2.4.1 Adopting a Multiresolution Approach

All these models implicitly or explicitly represent rhythm by decomposing time into

levels, strata, or saliences having temporal periods which differ between each level.

These periods have an intuitive hierarchy from arranging them ordered by time

extent. Beat duration times (IOI) inter-relate by low value integer ratios. This

matches binary and ternary decomposition of the symbolic rhythmic forms of music

theory.

These time periods may be seen as the reciprocal of frequencies of events. The

ascending/descending arrangement can then form a rhythmic spectrogram, in a sim-

ilar manner to sonogram representations of audio signals [119, 34], but at rhythmic

frequencies (summarised in Section 2.4.2). This suggests a computational analy-

sis approach of exhaustively representing the periodicities which are created by the

temporal relationships between beats over multiple timescales. This includes both

metrical and agogic times on a continuous scale, the later will form inharmonic ratios

to a rhythmic “fundamental frequency”.
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With the exception of Todd’s primal sketch approach [103], earlier models have

worked exclusively in the time domain. Autocorrelation approaches identify peri-

odicities but impose an overly restrictive strict periodicity. This is clearly unsuited

for rubato and agogic accentuation representation, as these effects are inharmonic

to meter and grouping structures.

Oscillator models also imply identification of periodic behaviour, while allowing

a (albeit non-obvious) degree of deviation from strict periodicity. Oscillator models

attempt structural decomposition and entrainment simultaneously. By considering

rhythmic frequency directly allows for an explication of each of these processes. This

allows for transient periodicities marked by phenomenal accents to be matched and

to compete, to disambiguate sections which are not marked by steady accenting. It

is therefore fruitful to investigate frequency analysis methods which enable explicit

representation of frequency change over time.

2.4.2 The Rhythmic “Periodic” Table

The levels of musical time discussed in this chapter may be arranged by their as-

sociated IOI times reported in the literature. Inspection of the times (arranged in

Table 2) reveals a relatively evenly spread distribution of perceptual effects across

a range of interval times.14 While this table incorrectly presents the impression of a

common accuracy of interval timing from a wide range of literature, it does function

to provide converging evidence of the states of temporal perception.

With the development of common musical practice, standard terms have been

used to describe different dance styles. From these conceptions of dances, an ap-

propriate rate is devised and over time codified to a metronome marking (M.M.).

However, there are limits to which there can be direct relationship between musi-

cal measures of tempo and psychological findings. Pedagogical approaches to the

knowledge of tempo, often aim to impress on students that a dance term (i.e. An-

dante) is as much a description of a dance style, with connotations which will effect

articulation, structure, trills and degree of ornamentation, as a description of a strict

tempo rate of musical event presentation.

14A hearty thanks to Robyn Owens who first described this table as a “multiresolution analysis
of the literature”. A coarser, wider ranging and light-hearted taxonomy is also given by Pope [133].
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Literature review of time intervals and their perceptual functions

IOI Frequency Tempo M.M. Comment

(msec) (Hz) (BPM)

10000 0.10 6 Approximate minimum time of Newell’s unit task level.

Cowens maximum length of Long Auditory Storage.

[155, 19]

5000 0.20 12 Centre frequency of Todd’s gestural bandpass sensory-

motor filter associated with whole body motion (body

sway). Near longest limit of perceptual present interval.

[104, 102, 35]

3000 0.33 20 Extent of subjective present: The level of temporal

gestalt perception phenomenon. [181, 156]

2000 0.50 30 Fraisse’s slowest interval for grouping. Dowling’s esti-

mate of slowest interval spanning the perceptual present.

Cowen’s estimate on minimum duration of Long Audi-

tory Storage. [41, 35, 19]

1800 0.56 33 Unable to be predicted and clapped along to accurately.

Parncutt’s assessment of the longest interval of musi-

cally salient pulse sensations. Fraisse’s longest interval

able to be syncronised with. [131, 41]

1500 0.67 40 Largo Slowest interval for tactus. Slowest interval for change

from repeating sequence to isolated events [84, 55]

1400 0.71 42 Largo Slowest limit on spontaneous tempo [55]

1000 1.00 60 Larghetto Newell’s approximate fastest interval for the elementary

operations level within the cognitive band. Slowest in-

terval of maximal time interval sensitivity. [155, 42, 107]

857 1.17 70 Adagio Traditional renaissance tactus. [84]

800 1.25 75 Adagio Slowest interval for easy perception of meter. [55]

710 1.41 84 Andante Parncutt’s mean preferred tapping tempo [130]

700 1.43 85 Andante Average preferred or spontaneous tempo. [41, 68]

600 1.67 100 Andante Desain and Honing’s approximate tactus rate and pre-

ferred or spontaneous rhythm. Todd’s centre frequency

of his foot-tapping bandpass sensory-motor filter. Max-

imal accuracy in timing estimation. [27, 41, 104, 55]

500 2.00 120 Moderato Meter perception threshold, faster than this, percep-

tual (automatic, universal) rather than cognitive or

schematic rhythm induction occurs. Slower than this,

knowledge / culture-dependent, schema-based control

occurs. [156, 113, 10]

continued on next page
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IOI Frequency Tempo M.M. Comment

(msec) (Hz) (BPM)

375 2.67 160 Allegro Fastest interval for tactus. Collier’s highest ratio be-

tween triplets and swing rhythms of Jazz drummers.

[84, 17]

333 3.00 180 Presto Maximum of peak distribution of speech modulation

frequencies [79]

300 3.33 200 Prestissimo Maximum time interval sensitivity [42, 107]

250 4.00 240 Longest syllable length. Slowest period of the peak

distribution of speech modulation frequencies [156, 79]

200 5.00 300 Fastest interval for easy perception of meter, fastest

interval for maximal time interval sensitivity, synchro-

nisation capability and spontaneous tempo. [55, 42, 107,

41, 131]

166 6.02 361 Freund’s lower bound on fastest musical motor move-

ments (trills). [156]

115 8.70 521 Fastest rate that subjective rhythmisation is still pos-

sible. [41]

100 10.00 600 Lower limit on Terhardts roughness frequency range.

[79]

83 12.05 722 Freund’s upper bound on fastest musical motor move-

ments (trills). [156]

70 14.29 857 Streaming begins to occur.

50 20.00 1200 Point at which streaming has occured, a single auditory

stream is perceived, rather than a sequence of events.

[55]

40 25.00 1500 Order relation can be distinguished. Category bound-

ary between “plucked” and “bowed” sounds. [156, 159]

30 33.33 2000 Order threshold: can produce an order relation (i.e or-

der between the events can be distinguished). Proposed

abstract fastest pulse, pace-maker or beat clock. [156]

10 100.00 6000 Approximate slowest limit on Newell’s neural band.

Approximate interval for preemption of the leading voice

in ensemble playing. [155, 28]

5 200.00 12000 Fastest interval for the the fastest pulse period. Fastest

interval corresponding to the upper limit on Terhardt’s

roughness frequency range [156, 79]

3 333.33 20000 Fusion threshold fastest interval: simultaneous, indis-

tinguishable (even with different loudnesses, but same

duration), a single event. [156]

continued on next page
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IOI Frequency Tempo M.M. Comment

(msec) (Hz) (BPM)

Table 2: Literature review of time intervals and their perceptual functions.

2.4.3 Non-causality of Rhythm

Leonard Meyer has noted in his seminal work “Emotion and Meaning in Music”:

“In short, earlier rhythmic groups influence later ones; or, to put it

in another way, an established rhythmic process tends to perpetuate it-

self. Equally important is the fact that future organization also influences

grouping. Thus the performer will play the first measures of the Mozart

theme [of the first movement of his Piano Sonata in A Major] in such

a way that its trochaic pattern is clear because he [sic] knows what the

organization of the two-measure group is.

It is, then the total disposition of all the musical materials that deter-

mines what the rhythmic grouping will be. This is another way of saying

that the entire musical pattern will tend to be perceived in the simplest

and most satisfactory terms” (my emphasis) [112, pp. 109].

Of course Meyer is not arguing omniscience of the performer: “Often the rhyth-

mic organization is discontinuous, incomplete or ambiguous” [112, pp. 110], but that

the intention of the performer is preconceived, possibly below a conciousness capable

of self-inquiry or verbal articulation. Todd has also noted that the performer has

the intention formed before performance:

“It is assumed here that a trained musician is likely to be a good can-

didate for the status of “experienced listener” and, if a particular piece

has been practised, is likely to have some kind of global understanding

of the piece” [97, pp. 35].

This argues against simply viewing the rhythm perception of a listener in a causal

manner, i.e we start from a tabula rasa and the rhythmic organisation builds up as

we progress through the piece. This ignores aspects of temporal pattern comple-

tion, enculturated knowledge, temporal atoms (preferred interval categories, i.e 2:1,

rhythmic feet) and training. There must be a significant retrospective assignment

of the role of each event as the temporal context expands during performance.
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2.4.4 Hierarchial, Multiresolution Rhythm

In summary, these points can be made:

1. Tempo constraints occur from memory and motor limits. These manifest

themselves in preferred rates of rhythms and determine the structural priority

of events as integral or superficial to the rhythm.

2. Subjective present acts as an integrator causing non-linearities in the percep-

tion of temporal intervals, such that certain rates, and relative ratios of rates

of events are priviledged.

3. Objective accentuation confirms structure. Accentuation in all its forms is so

prevalent in music that events will be expected to be accented simply from

the rhythmic structure. The expectation of accented events from rhythmic

structure allows syncopations to be acceptable and objective accentuation to

be absent.

4. Meter, tactus and grouping are enculturated concepts that are encouraged by

perceptual constraints, but may not be universal in the face of non-western

bell-lines, polyrhythms and free rhythms. Non-western notions of rhythm do

share many features with common practice, so clearly a uniform federation of

behaviours are behind all forms of rhythm perception. Several attributes of

these behaviours have been documented here, but the behavioural processes

themselves may well be too distributed to be isolated.15

5. One attribute which can be identified is the perception of pulse. Mechanisms

aiding syncronisation allow detection of repetition, which in the ideal case has

exactly equal IOIs.

6. Time is organised into temporal levels. Each level corresponds to an increas-

ingly wider time-span integrating period. The perception of a pulse corre-

sponds to the organisation of a single level.

7. Regardless of privileged forms mentioned in Point 2, humans perceive and

produce wide ranges of rhythmic rates. This suggests the ability to organise

and adapt temporal levels and to process a large number of temporal levels.
15The term distributed is used in the sense of subsymbolic neural representations [182, 152],

where a behavioural process may be modelled without isolating the data representation to inter-
pretable symbolic forms.
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8. Complex rhythmic structures can be considered to be the result of the inter-

action of several temporal levels.

9. Expressive timing corresponds both to the modulation of temporal levels and

to short term distortions of periodicity. Modulation in the frequency of a

temporal level accounts for the acceleration and deceleration in a performed

rhythm. Time limited deviations away from periodicity can account for the

leading or dragging of the introduction of a note and can account for swing

when that deviation is itself applied repetitively.

From this survey of rhythmic attributes, it is clear that there is a complex inter-

action between event intervals forming temporal levels and the degree of perceptual

strength of each event. In the next chapter, the signal processing theory of the

continuous wavelet transform is introduced and applied to perform multiple resolu-

tion analysis of representations of musical rhythms. It will be shown that Wavelet

theory reflects a significant portion of the features of hierarchy, accent and temporal

context of musical rhythm which have been described here.



Chapter 3

Multiresolution Analysis of

Rhythmic Signals

As has been detailed in Chapter 2, there are compelling arguments for analysing

musical rhythms over multiple timescales and modelling rhythm in terms of multiple

simultaneous periodicities. In this chapter, the theoretic formalism of a multiple

resolution signal analysis using the wavelet transform is introduced. The wavelet

transform is an improvement over the Fourier transform, the traditional means of

signal frequency analysis, because it is better able to simultaneously localise the

analysed signal in both time and frequency domains. Musical rhythm is then recast

as a low frequency amplitude and frequency modulated signal. Morlet wavelets

suitable for signal analysis are then introduced and their ability to analyse a musical

rhythm is evaluated.

3.1 The Fourier Transform

The traditional analysis approach to reveal a time-domain signal’s behaviour in the

frequency domain is to use the Fourier Transform, which decomposes a signal into

a series of basis functions consisting of weighted complex exponentials.1 For the

signal s in the continuous time t case, ŝ(ω) is the Fourier transform of s(t) for each

continuous frequency ω:

1Readers may wish to refer to the excellent text by Proakis and Manolakis [138] for background
mathematics to signal processing and Fourier analysis.

60
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ŝ(ω) =

∫ ∞
−∞

s(τ) · e−iωτ dτ,

where i is the imaginary identity i =
√
−1. The natural exponential base is repre-

sentated as e, with the Eulerian identity

e−iω = cosω − i sinω

composed of sine and cosine basis functions, independent of t and thus of infinite

duration, so that s(t) is decomposed into a set of scaled basis functions.2

The Fourier transform does not convey information about translation of the

signal in time, and therefore can not reflect frequency change over time. This issue

is addressed by the Short Time Fourier Transform (STFT), a time limiting windowed

version of the Fourier Transform

ŝ(t, ω) =

∫ ∞
−∞

s(τ) · h̄(τ − t) · e−iωτ dτ,

where h̄(t) is the complex conjugate of the window function. Significantly, h(t)’s

time scale is independent of the harmonic number f = ω
2π

, the same window function

is used for all harmonic components (see Figure 4). In the discrete version of the

STFT, all harmonic components produced by the analysis are assumed to be in ratio

to h(t), which is assumed to extend in time to cover the period of the fundamental

frequency of the signal. The energy of any components in the original signal changing

in frequency, that is, not matching the assumption of strict harmonic ratio to h(t)

within its time extent, will be distributed (“blurred”) across the window.

While several different window functions have been proposed, such as the Han-

ning or Hamming windows [138], most tend to have the general characteristic shape

of a Gaussian probablity density envelope

gα(t) =
1

2
√
πα
· e−t

2/4α

over the basis function. A Gaussian window function has the property that it is

invariant between time and frequency domains, therefore producing the best si-

multaneous localisation in both domains with respect to Heisenberg’s uncertainty

relation [9, pp. 440], [94, pp. 33]
2A corresponding synthesis equation allows reconstruction from the Fourier components back

to s(t) [138].



CHAPTER 3. MULTIRESOLUTION ANALYSIS OF RHYTHMIC SIGNALS 62

Time

Frequency Time-Frequency Grid of the STFT

Minimum Time
Resolution

Minimum
Discriminable
Frequency

Figure 4: Analysis extents in the time and frequency domains of the Short Term
Fourier Transform. Of significance is the same minimum time extent for each fre-
quency band. High frequencies will be capable (due to their short wavelength) of
changing frequency within the minimum time extent. This change within the time-
frequency “box” will be distributed over the boxes’ area.

δt · δω ≥
1

4π
.

This lead Gabor to propose its use for basis functions which incorporate both time

and frequency [44].

3.2 Rhythm as an Amplitude Modulation

Before introducing further signal analysis techniques, it is necessary to cast musi-

cal rhythm in terms of a signal capable of being analysed without misrepresenting

characteristics of the perception of rhythm as described in Chapter 2. An ideal,3

perfectly isochronous rhythm can be considered as an amplitude modulation [34]

of the auditory frequency ranges. Such a view was first noted by Todd [101]. A

simple and fundamental example is illustrated in Figures 5 to 9. A constant tone,

3Here the term “ideal” is used in the signal processing sense of a theoretical signal or system
that is unrealisable in practice. While an isochronous beat can be produced by machine, a human
performer will neither achieve such accuracy, nor as we have seen in Chapter 2, wish to do so, as
it would prevent communication of long term structure.
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the carrier, comprising a single frequency and therefore energy at a single spectral

component,

yc = sin(2πfa t), 0 ≤ t ≤ 1, (2)

(in this example, the auditory frequency fa = 440Hz) is modulated in its amplitude

by a much lower frequency function, in this simplest case, also a sinusoid, with a

DC and phase offset (Figure 5):

ym = cos(2πfrt+ π) + 1, 0 ≤ t ≤ 1, (3)

where fr = 4 is the 4Hz rhythmic frequency. The modulation is performed by

multiplying in the time domain the rhythmic modulator periodic function with the

auditory carrier periodic function (Figure 8),

y = ycym. (4)

The corresponding separate Fourier domain representations of the carrier and

modulator are shown in Figures 6 and 7 respectively.

The Fourier domain representation of the resulting modulated signal is that of

a convolution of the two spectral impulses of Figure 7, with the rhythmic frequency

forming sidebands around the auditory tone (see Figure 9). Significantly, there

is no spectral energy at the original rhythmic frequency component due to the

convolution.

In our contrived example above, the rhythms have periods that exactly match

the Fourier analysis window. Implicitly, there is a rectangular window over the data

(see Moore [119] and Proakis and Manolakis [138]). The window and the rhythm

frequency have been chosen to minimise the effect of the windowing function in order

to demonstrate the spectral characteristics of rhythm without requiring a STFT.

Only in this example of a periodic sinusoidal amplitude envelope perfectly matching

the analysis period of the Fourier transform, will the rhythmic frequency be a single

spectral component. In contrast, an anapest rhythm (Figure 10) will alter the

periodic nature of the isochronous pulse. The resulting multiband spectrum will be

distributed over the Fourier window (again the rhythm frequency has been chosen

to match the analysis window to avoid artifacts), appearing as composed of low
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Figure 5: An amplitude function formed by DC shifting a low frequency sinusoid.

200 400 600 800 1000
Frequency0

5

10

15

20

25

Energy

Figure 6: A Fourier transform of the acoustic 440Hz pitch function.



CHAPTER 3. MULTIRESOLUTION ANALYSIS OF RHYTHMIC SIGNALS 65

0 2 4 6 8 10 20 30 40 50 60
Frequency0

10

20

30

40

50

Energy

Figure 7: A Fourier transform of the rhythmic amplitude function in Figure 5. The
two spectral peaks are at the zeroth component (the DC offset) and the fourth
harmonic (the rhythmic frequency).
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Figure 8: A time domain representation of the rhythmic amplitude function in
Figure 5 multiplied (in the time domain, convolved in the frequency domain) with
the acoustic 440Hz pitch function of Figure 6.
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Figure 9: A Fourier domain representation of the rhythmic amplitude function in
Figure 7 multiplied (in the time domain) with the acoustic 440Hz pitch function
of Figure 6. The two rhythmic sidebands surround the central acoustic carrier
frequency.
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Figure 10: An anapestic rhythm.
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Figure 11: A Fourier domain representation of the energy of the rhythmic amplitude
function in Figure 10.
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order harmonics with energy inverse to harmonic order, and a spectral component

corresponding to the frequency (within the window) of the beat (Figure 11).

Real instrument tones will comprise complex, time varying, clusters of spectral

components rather than a pure sinusoid, and unless the rhythm is isochronous,

its Fourier representation will also form a cluster of sidebands on either side of the

carrier frequency. In addition, the pitch content of a rhythm will vary with chorusing

and vibrato when performed on many instruments such as string, wind, percussion,

or singing. The rhythmic frequency will therefore not be discriminable sidebands

around an acoustic carrier.

This poses a problem in attempting to discriminate and analyse a rhythm from

an acoustic signal (by first determining its acoustic carrier) in the spectral domain,

even if the STFT is used. In order to extract such a rhythmic signal from an acoustic

signal, a deconvolution would require a prior knowledge of the time-varying acoustic

component of the signal. Deconvolution approaches such as homomorphic decon-

volution [138] requires windowing between two separate frequency domains using

the cepstral coefficients (logarithmic domain) of the two convolved signals. Another

approach, adopted by Todd [103] is to take the signal energy of the acoustic signal

of Equation 4, |y|2, effectively a rectification, which will re-establish the rhythm

modulation function independent of the acoustic carrier.

3.2.1 Capturing Musical Intention

An alternative pragmatic approach to this rhythmic convolution problem is to cap-

ture the musician’s intention, rather than capturing the acoustic result. This is

done by sampling the rhythmic signal before it is made audible, that is, before it is

“multiplied” with the auditory carrier signal, and subsequently producing an audi-

ble rhythm. For the present purposes of analysis, electronic MIDI drum pads [63]

can transduce the time of a drum strike4 and a measure of intensity of the strike.5

This MIDI data is available for analysis before the synthesis hardware generates the

audible sounds (sampled drum or synthetic sounds).

4The temporal resolution of MIDI is at best 1 msec [90, 118], however most MIDI synthesis
devices are not able to respond within those time constraints [121] and a time resolution of reception
is approximately 16 msec. Currently, the temporal resolution of the Roland PAD-8 drum controller
generating MIDI data hasn’t been tested but is confidently assumed to be within that measure.
The processing required to transduce the drum strikes from a threshold measure of a piezo sensor
to MIDI note values is low.

5The MIDI velocity value, a measure in arbitrary units of 1-127 [63].
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An acoustic drum provides a wide variety of control over the timbre and pitch

of the played sound, depending on the intensity of the strike and location on the

drumskin of the strike. Currently available MIDI drum pads do not indicate such

timbral information.6 As reviewed in Chapter 2, timbre and non-tuned pitch will

influence accent perception, but this will typically be accompanied by dynamic (in-

tensity) based accents. Therefore the MIDI velocity value is assumed to be a meaure

of the total intended accent by the performer. Other MIDI controllers (keyboards,

wind instruments, guitars) are also available to capture rhythms from performances

other than percussion music. For an interactive performance situation, there is a

significant reduction in data processing by capturing the rhythm directly via MIDI,

or another performance transduction process, without the preprocess of recovering

the rhythm from the acoustic signal.

3.2.2 Representing Rhythm for Analysis

A rhythm can be perceived, memorised and reproduced independently of the mu-

sic’s original pitch and timbral content. As noted by Longuet-Higgins [86], rhythmic

figures (such as a dotted rhythm), can be distinguished regardless of the accompa-

nying tonal development. Compositions purely for percussion of indefinite pitch and

percussion solos are interpretable. In addition, the articulation and even intensity

components can be removed while still preserving the sense of rhythm [148, pp. 64].

Even using very short impulse-like clicks, a familiar rhythm can be recognised, or

a new rhythm comprehended and tapped along with. The rhythm is induced from

the IOI’s between events alone [82, 148].

Pitch, tonality, harmony and timbre obviously play a role in rhythmic interpre-

tation. In reciprocal manner, tonal interpretation is strongly influenced by rhythmic

structure. This has been well characterised and modelled by Rowe’s Cypher system

and his other performance interpretation models as two parallel behaviours which

provide mutual evidence to aid the other process [150, 149]. The rhythmic interpre-

tation will inform the tonal interpretation and then that result will then revise the

rhythmic interpretation, in a controlled feedback loop. The tonal interpretation can

therefore be seen to be weighting the salience of each beat.

6Nor is the MIDI specification designed to adequately represent such timbral information [118].
For instance, Korg Corporation’s “Wavedrum”, which uses a standard drum skin to trigger phys-
ical models of drums uses the location of the drum strike as a control dimension. However it
communicates an impoverished representation over its MIDI channel [151].
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Therefore the approach adopted in representing a rhythmic function for analysis

has been to take the short duration tap in the limit and represent the time of the

onset of each beat as an unit impulse function [138]:

δ(t) =

{
1 if t = 0

0 otherwise,
(5)

where t is the sample index at the onset of the note. The rhythm function for a

piece of music is therefore an uneven train of pulses with intervals of zero valued

samples matching the IOI between beats. Such a representation has been used by

other researchers [80, 12]. The uneven pulse train can also be viewed as a sampling

of the amplitude envelope signal. By the sampling theorem [138], a continuous

function x(t) composed of component frequencies less than the Nyquist rate (Fs/2),

may be discretely approximated by the summation of weighted, time-shifted impulse

functions:

x(t) =

∞∑
k=−∞

x(k)δ(t− k).

Recalling the amplitude function representing the rhythm of Equation 3, a pulse-

train function can be seen to be a minimal or critical sampling of the amplitude en-

velope at the lowest sampling frequency which still accurately represents the rhythm

function — one sample at the stationary point of each “lobe” of the envelope (see

Figure 12). The sampling rate can be a reasonably low rate as the audible frequen-

cies are not present. A rate of 200Hz is appropriate and was also used by Brown in

her analysis of rhythm [12].

Weighting the impulse height by a normalised measure of the intensity of the

beat

c(v) =
v

127
, (6)

where v is the MIDI velocity value, incorporates the effect of dynamic accent, by

ι(t) = c(v) · δ(t), (7)
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Figure 12: Points comprising a critical sampling of a rhythmic amplitude function.

where ι(t) is the rhythm function composed of sparse impulse values (0.0–1.0). Here

we are assuming there is a linear relationship between the perceptual salience of an

individual dynamic accent and the intensity of a beat.

This is ignoring the effect of masking of beats by temporal proximity and other

non-linearities between intensity and its final perceptual salience. Masking, auditory

streaming effects [10] and expectation (for example, from tonal structure) could be

modelled by a hypothetical non-linear transfer function version of c(v) in place of

Equation 6, which would summarise the total effect of context on the perceptual

impact of the beat. Alternatively, if a frequency representation is used which pre-

serves energy (Parsevals relation [138]), such perceptual effects could be modelled

in the frequency domain. As section 2.1.4 reported, masking and streaming occurs

with IOIs shorter than 200ms, smaller than intervals found in performed rhythms

analysed here, so the impact of local proximity is assumed here to be negligible. The

opportunity to capture the intensity of the strike of the performer with a drum pad

posits the linear weighting of the impulse as an acceptable approximation of the to-

tal intended accent to be communicated to the listener. As I have argued, expressive

timing, agogic, dynamic and other objective accents will produce complex, frequency

and amplitude varying rhythmic signals which will require a non-stationary signal

analysis technique. Analytical wavelets are well suited to this task.
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3.3 The Continous Wavelet Transform

Wavelet theory is a recent convergence between independent research in image pro-

cessing, coding theory, applied mathematics and seismology [144, 20, 186, 48]. It

has historical roots in the analysis of time varying signals, the principle being to de-

compose a one-dimensional signal s(t) at time t, into a non-unique two-dimensional

time-frequency distribution Ws(t, f), representing frequencies changing over time.

In contrast to the STFT, the continuous wavelet transform (CWT) [52, 20],

decomposes the signal onto scaled and translated versions of a mother-wavelet or

reproducing kernel g(t),

Ws(b, a) =
1
√
a

∫ ∞
−∞

s(τ) · ḡ(
τ − b

a
) dτ, a > 0, (8)

where a is the scale parameter, controlling the dilation of the wavelet function,

effectively stretching the wavelet geometrically over time. The translation parameter

b centres the wavelet in the time domain. Each of the Ws(b, a) coefficients weight the

contribution of each basis to compose s(t). The geometric scale gives the wavelet

transform a “zooming” capability over a logarithmic frequency range, such that high

frequencies (small a) are localised by the window over short time scales, and low

frequencies (large a) are dilated over longer time scales [75].

Resynthesis from the transform domain back to the signal is obtained by

s(t) =
1

cg
·

1
√
a

∫ ∞
−∞

∫ ∞
−∞

Ws(b, a) · g(
t− b

a
)
dadb

a2
, (9)

Equation 8 uses τ to indicate the time variable is used as an integrating parameter,

whereas t in Equation 9 indicates the resulting signal at each time point. The

constant cg is set according to the mother wavelet chosen

cg =

∫ ∞
−∞

|ĝ(ω)|2

|ω|
dω <∞. (10)

The analysing mother wavelet must meet admissibility conditions of finite energy

from absolute and square integratibility, given by,

∫ ∞
−∞

|g(t)|dt <∞, (11)
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Figure 13: Time extent of scaled Morlet wavelets (Equation 8) over a range of 10
octaves.

and

∫ ∞
−∞

|g(t)|2dt <∞. (12)

The second admissibility condition (Equation 12) implies, in practice, a zero mean

(no DC bias),

ĝ(0) = 0, (13)

or,

∫ ∞
−∞

g(t) dt = 0,

which produces a finite time supported short wave — hence the term wavelets. The

support of a function s is the closure of a set of points t where s(t) 6= 0. The time

support of scaled wavelets of Equation 8 are shown in Figure 13.
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The CWT indicated in Equation 8 is a scaled and translated filter from a constant

relative bandwidth7 (Equation 10) filter bank, comprised of an infinite number of

filters or “voices”. For implementation, the scale parameter a must be discretised

with a sufficient density of voices per octave.

3.3.1 Morlet’s Analytical Wavelets

Grossmann and Morlet [52], have applied a complex-valued Gabor mother-wavelet

for signal analysis,

g(t) = e−t
2/2 · eiω0t, (14)

where ω0 is the frequency of the mother-wavelet (before it is scaled). In essence,

this is a Gaussian window over cosine and sine curves which are in the real and

imaginary planes respectively (See Figure 14). In the frequency domain the wavelet

has the form

ĝ(ω) = e−(ω−ω0)2/2 − e−(ω2+ω2
0)/2. (15)

Subsequently, Kronland-Martinet, Morlet and Grossman applied such a wavelet to

sound analysis [76, 75, 74]. The research reported here differs from this earlier work

in that it is the rhythm signal (the function that modulates the auditory carrier) that

is analysed using so-called Morlet wavelets — not the raw sound signal. Here the

rhythm is analysed independently (effectively deconvolved) of the auditory, carrier,

component.

Equation 14 is close to a “progressive support” or “analytic” wavelet, which is

defined as

g(t) = u(t) + iv(t), (16)

where v(t) and u(t) form a Hilbert Pair

v(t) = u(t) ∗
1

πt
, (17)

7Known in engineering terms as “constant-Q” [185].
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Figure 14: Time domain plots of Morlet wavelet kernels, showing real and imaginary
components for the mother wavelet and a version dilated by a = 2.

where ∗ represents the convolution operator [138]. The real and imaginary compo-

nents being the Hilbert transform of each other [54] produces

∀ω < 0 : ĝ(ω) = 0. (18)

That is, the wavelet analysis produces positive frequencies only, conversely, regres-

sive support produces negative frequencies only [75, pp. 53]. However, due to the

asymptotic tails of the Gaussian distribution, the Morlet wavelet kernel is not pro-

gressive, nor does it meet the admissibility condition of Equation 13 for reconstruc-

tion. With the exception of analysis-by-synthesis approaches, much analysis can be

performed without requiring reconstruction, so this is not a problem in practice.

The internal frequency ω0 determines the number and amplitude of oscillations

under the Gaussian envelope in the time domain and effectively controls the fre-

quency discrimination (bandwidth) of the wavelet. With a sufficient ω0 > 0, the

negative frequency components can be made small enough to make Equation 14

nearly progessive, and they can be removed with a corrective term [57, pp. 31].

Daubechies [20, pp. 76] and Holschneider [57, pp. 32] have suggested ω0 should be

set so that the second oscillation of the real component of eiω0t meets the envelope

e−t
2/2 at half its maximum value. The smallest value is π

√
2/ ln 2 = 5.3364, in this
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Figure 15: Scalogram and phaseogram plots of an impulse train spaced with an IOI
of 256 samples. The most activated ridge is centered on the scale corresponding to
an interval of 256 and a lower energy ridge is centered on the interval of 128. This
secondary ridge occurs from interactions between secondary lobes of the wavelet.

research ω0 = 6 was determined experimentally to energise the correct scale with a

reciprocal period matching the IOI between two impulses. This matches Guillemain

and Kronland-Martinet’s suggested value [53], while Daubechies suggested 5.

The conservation of energy allows the modulus of a wavelet transform to be

interpreted as an energy density localized in the time/scale half-plane. An analytic

(progressive) signal Zs(t) of s(t) can be defined in polar coordinate terms of modulus

As(t) and phase φs(t) as

Zs(t) = As(t)e
iφs(t). (19)

The magnitude and phase of the wavelet coefficents Ws(b, a) can then be plotted

on a linear time axis and logarithmic scale axis in grey scales as a “scalogram” and

“phasogram” (see Figure 15). The magnitude being

As(b, a) = |Ws(b, a)| = <[Ws(b, a)]
2 + =[Ws(b, a)]

2 (20)
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and phase

φs(b, a) = arg(=[Ws(b, a)],<[Ws(b, a)]). (21)

<[x] and =[x] are the real and imaginary components of the CWT coefficients. These

representations were first described by Grossman and co-workers [51]. Magnitude

values are mapped from lowest energy levels to white, highest energy levels as black.

Phase values are mapped from the domain 0 − 2π to black through to white. The

transition from white to black indicates a return to 0. Alternatively, the phase can be

mapped onto a colour wheel so that the white to black transition is less prominant,

but a sense of phase regularity is still apparent. To improve clarity, phase values are

clamped to 0 where they correspond to low magnitude values, otherwise

|Ws(b, a)| > εm (22)

where the magnitude threshold εm = 0.01, registers the phase measure as valid.

3.3.2 Wavelet Properties

Non-orthogonality

Despite the admissibility conditions of Equation 11 and 12, there remains many

choices for mother wavelets. Orthogonal basis functions produce a non-redundant

transform with a compensated aliasing between filters that enables perfect recon-

struction [20]. Such wavelets are used in coding and compression applications as they

minimise the number of wavelets representing the signal through the use of dyadic

grids, discarding redundant coefficients and enabling discretisation. The difference

between such discrete wavelets and the continuous wavelet transform of section 3.3.1,

is that discrete filters are not exact scaled versions of each other. Under certain con-

ditions, the discrete transform will converge, after a number of iterations, to scaled

versions of previous filters. In order for the filters to converge to a continuous limit,

the filters must be regular, i.e. differentiable, requiring sufficient zeros [138] at the

Nyquist rate to attenuate repeat spectra.

However, orthogonal wavelets are not suitable for this application because they

are translation dependent as they do not preserve the phase of the signal [185]. That

is, a signal shifted by one sample will produce a very different distribution over the

wavelet coefficients compared to the unshifted decomposition.
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Applicability of the Morlet wavelet to rhythm analysis

Without orthonormality of the basis, the wavelet expansions are not linearly inde-

pendent. This implies there are many different superpositions of the basis functions

which will sum to give the original signal. Therefore the choice of wavelet for sig-

nal analysis is concerned with making explicit the components of the signal that in

general match the problem domain. Coefficients Ws(b, a) of a decomposition of a

signal represent how close the signal is to each scaled and translated basis function

[144]. For signal analysis purposes then, the nature of both the wavelet and the

signal strongly influences the interpretability of the decomposition.

As the time domain plots indicate (Figure 14), the Morlet wavelet is non-causal,

running forward and backward in time. A causal system is one that depends on past

and current inputs only, not future ones [138]. Non-causality implies the wavelet

transformation must be performed on a recorded copy of the entire signal, and so

is physically unrealisable in real-time. Therefore the wavelet is best considered in

terms of an ideal theoretical analysis kernel, rather than one existing in vivo as a

listener’s peripheral perceptual mechanism.

However, there are reasons to entertain the idea that the mechanisms used in

the process of rhythm induction are not fully causal. Enculturation of rhythms from

previous listening can be argued to construct a schema approach to perception. This

has been argued for tonality by Leman [83], for rhythm by Jones [65], and in terms

of pulse sensations, by Parncutt [130]. New rhythms are perceived with respect to

previously heard rhythms and are organised and anticipated within the harness of

a particular schematisation. In that sense, the perception of a beat in the present

has an expectancy weighting, projecting from the future back towards the present.

Indeed, a performer will practice a phrase such that each beat is performed

within the context of beats imagined and intended, but yet to be performed (see

also Todd’s similar argument [97]).8 Given the cross-cultural nature of most musical

development, most listeners will share and understand the cultural implications as

the phrase develops. They will predict subsequent beats, and draw meaning and

emotion from the confirmation of such predictions, as Leonard Meyer has argued

(see section 2.4.4 and [112]). We need the corpus of learned rhythms as a reference

point to subsume the new performance. A purely causal model will be limited in its

8Even in improvised music, with the notion of learned riffs, Indian paltras [169] and other
improvisation training methods [3], each beat is performed within the context of intended future
beats as well as those beats already performed.
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success because it is not taking into account the (culturally relative) retrospection

possible of the performance as it proceeds. This poses a serious, though perhaps

not insurmountable, problem for computational approaches, namely providing the

representation of schematic expectancies9 that a musician will accumulate in the

process of listening and performing.

The non-causal projection of the Morlet wavelet can therefore be viewed as an

idealistic aggregation of such predictive memories. Backprojection of the filter is a

sense of completion of an implied rhythm. It functions as retrospective assessment

of the rhythm, as argued by Desain [23], Jones and Boltz [67] and Scheirer [154]. Its

use purposefully does not seek to apportion rhythm perception behaviour between

biological and cultural processes. It is in the non-causality that this work differs

most dramatically from the philosophy and results of Todd’s rhythmograms [103].

Clearly the Morlet wavelet is an oversimplification of the rhythm perception

process. Construction of a wavelet which is a closer model of the auditory system,

in a similar manner to the approach of Todd in using filters derived from gammatone

and haircell models [103, 105, 106, 107, 108], may be possible. Despite the Morlet

wavelet being a theoretic formalism, and being a basis for smooth functions, it has

several positive attributes as a wavelet for rhythm analysis.

A clearer model of musical time can be constructed in terms of the time-frequency

representation of rhythm, rather than strictly in the time domain. The invariance of

the Gaussian envelope between time and frequency domains of the Gabor transform

(described in section 3.1) also holds for the Morlet wavelet. This wavelet there-

fore has the best simultaneous localisation of change in time and frequency. Other

wavelet kernels will achieve better resolution in one domain at the expense of the

other. Arguably, the Morlet wavelet therefore displays the time-frequency compo-

nents inherent in a rhythmic signal, prior to the perceptual processes of the listener.

Using such wavelets allows quantifying the representative abilities of other multires-

olution approaches to rhythm models, particularly Todd’s rhythmograms. Towards

such uses, the wavelet behaviour in analysing an impulse train is now considered.

9“Abstract structural regularities of the music of one’s culture”, in contrast to veridical ex-
pectancies, which arise from the particular musical events attended to in a performance [5, pp.
498].
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3.3.3 Wavelet Analysis of an Impulse

The wavelet transform produces short time, high frequency basis functions for small

values of the scaling parameter a and long time, low frequency versions for large

values of a. Short wavelet basis functions isolate discontinuites in the time domain,

while long basis functions analyse with high discrimination in the frequency domain.

An impulse is localised in time, but infinite in frequency content. A CWT of

an impulse localises the impulse’s effect in the time domain at the higher frequency

scales (small a) and spreads the effect across longer finite time periods at lower

scales. Due to the non causality of the Morlet wavelet, at each scale and translation

of Equation 8, the impulse will be projected simultaneously forward and backward in

time in the time-frequency plane, matching the support of the wavelet. This forms

an influence cone [57] which has a time interval, for each scale and translation,

between [atl + b; atr + b] for a mother-wavelet with support over the interval [tl, tr].

As detailed by Grossmann and co-workers [50, 51], [76, pp. 279], and Solbach et.

al [168], a singularity such as an impulse will be marked by a localised increase in

the modulus at high frequency scales and a constant phase across frequency scales,

independent of the mother-wavelet used.

An analysis of an isochronous train of impulses (Figure 16, that is, of a constant

beat frequency) with a bank of Morlet wavelets has been shown in Figure 15. The

abscissa axis represents time in samples, the ordinate axis is logarithmic, represented

here by the time extent of each wavelet voice, again in number of samples. The scale

with the highest modulus, indicating energy, corresponds to the frequency of the beat

— the reciprocal of the IOI, as indicated in Figure 17. The absolute timing of the

onset intervals between beats will be reflected by the absolute scale number. The

phase of a periodic component is indicated by a regular shade transition at the scale

corresponding to 256 samples. For scales lower in frequency than this the modulus

falls to zero and the calculation of phase becomes ill-defined.

From Figure 17, the relative energy levels of each scale is indicated. In addition to

the most highly activated scale corresponding to 256 sample IOI, there is a secondary

lobe of half amplitude energy at the first harmonic of the beat rate (128 samples).

This is caused by coincidence of the half-amplitude second oscillations of the kernels

in the time domain (Figure 18, by ω0 = 6). The forward time projection of the

nth beat will positively add with backward time projection of the (n + 1)th beat

at the first and second oscillations of the kernel, producing energy at the first and
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Figure 16: Plot of the time/amplitude signal of a simple isochronous pulse. The
sample value at the time of each beat is non-zero, values at all other times are zero.
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Figure 17: Modulus displaying the signal energy distribution over all wavelet voices
at the 650th sample time point.
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Figure 18: Time domain plots of the overlap of the real and imaginary components
of Morlet wavelet kernels. These demonstrate the cause of the reduced energy second
harmonic in the scalogram.

second harmonic of the beat rate. These artifacts arise from the Morlet kernel

and are dependent on the ω0 value, more oscillations producing further low energy

harmonics. Therefore a very slight signal energy at the third harmonic can be

discerned in Figure 17.

While artifactual in nature, these harmonics can be considered as representing a

listeners lower propensity to perceive an isochronous rhythm as actually at double

the rate of the events. From another perspective, second and third harmonics from

respective rhythms at half and one third rates will contribute to the total signal en-

ergy measured at a given rhythmic frequency. This effect was modelled explicitly by

Desain’s decomposable rhythm model [23], by forward projecting in time expectancy

curves with reduced amplitude at second and third harmonics. This effect occurs in

the Morlet wavelet as a by-product of the nature of the Gaussian envelope which is

modelling the Heisenberg inequality of time and frequency representation.

This implies that secondary preferences for doubling or to a lesser extent, tripling

a rhythm, is inherent in rhythm perception,10 rather than learned. Simplification

of rhythmic ratios towards 2:1 in reproduction tasks [55, 135, 41] does indeed show

that these ratios are privledged. Ubiquity in music notation, musical performance

practice and and other activities involving doubling a motor behaviour are easily

accomplished by humans. It is quite possible that this motor production optimisa-

tion is matched by an inherent perceptual process favouring simple subdivisions of

10Insofar as the assumption holds that rhythm perception is accurately represented in some
skeletal sense by a decomposition into short term oscillations.



CHAPTER 3. MULTIRESOLUTION ANALYSIS OF RHYTHMIC SIGNALS 82

time.

Parncutt’s findings in tapping experiments [130] suggest there should be near

equal propensity of the listener to also consider an isochronous rhythm at half the

beat rate (i.e 512 sample IOI). The relative energy levels of any rhythmic harmon-

ics from Morlet wavelets would need to be derived by matching against perceptual

measures. Parncutt’s tapping experiments demonstrated listeners would tap occa-

sionally at duple and triple meters to the stimulus meter, so second and third har-

monics and subharmonics would need to be introduced. It is possible that tempo

constraints applying to intervals longer than the subjective present are suppressing

the fundamental rhythmic frequency, such that only sufficently fast harmonics of

this fundamental are perceptible. However this conjecture has not been tested in

this research and would not, by itself, explain Parncutt’s near equal propensity for

half-beat finding. Such an effect could be explained by top-down expectation from

subjective rhythmisation.

3.4 Phase Congruency and Local Energy

Phase indicates the progression of a periodic wave though its cycle. Therefore an

oscillating phase at a scale indicates that frequency is present in the signal being

analysed. As suggested by Grossmann [51], inspection of a phasogram for regu-

larly spaced smooth progressions through the grey scale leading to dark to white

transitions indicate the presence of a frequency at a scale in the signal.

Image processing research in feature detection has found compelling evidence for

the local energy model, proposing that features of an image are perceived at points

where the Fourier partials of the image signal are most in phase synchronisation

over a range of frequency scales [120, 73]. This behaviour has been termed phase

congruency and peaks in the local energy function can be used to indicate points of

maximum phase congruency. The model is capable of predicting the effects of Mach

banding on trapezoidal intensity profiles. It is proposed here that phase congruency

can be adapted to be a new measure of the structural significance of beats within a

rhythmic context.

In the single dimension case, phase congruency is indicated by a constant shade

or colour across scales at a given time point in the phase plot. The local energy

function E(t) of the signal s(t) at time t is defined as
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E(t) =

N∑
n

√
<[Ws(t, n)]2 + =[Ws(t, n)]2, (23)

where n is the scale index or “voice” of the wavelet, N is the number of voices in

the discretisation and t, n substitute for b, a. Each Ws(t, n) can be considered as

a vector of a given magnitude and rotation (per Equations 20,21) around the scale

axis at time t (see Figure 19). E(t) is therefore the vector sum of those coefficents.

To provide a normalised phase congruency measure E(t) is weighted by the modulus

over all voices at t

PC(t) =
E(t)∑N

n As(t, n)
. (24)

Phase congruency in the single dimension rhythm frequency case can be considered

to be summing the contributions of all periodicities present at each time point,

taking into account their phase and amplitude.

Phase congruency is therefore a measure of the synchronisation between oscilla-

tions of rhythmic components. These components constitute different rhythm time

periods. Where these periods are highly synchronised indicates the end and be-

ginning of phrases over more than one temporal level. As noted in Chapter 2 and

summarised in Section 2.4.4, the interaction of temporal levels indicates rhythmic

structure. Therefore high synchrony—high phase congruency—may be interpreted

as points in time of high structural importance.

This is clearly coincident with the stratification approach of Yeston [192], phase

congruency being a measure of Yeston’s rhythmic consonance of phase between

strata. Phase congruency however does not distinguish between strata dissonance

from a phase shift and dissonance from difference in period. Phase congruency

can also be seen as a computational approach to Lerdahl and Jackendoff’s GTTM

metrical decomposition [84]. Desain’s summation, at each time point, of temporally

forward projected expectancy measures over a limited range of time scales is another

example of multiresolution rhythmic analysis which forms an analogue of phase

congruency [23]. Parncutt’s meter salience hypothesis also appears to be very close

to phase congruency, if his pulse sensations are related to the responses of wavelet

voices to analysed rhythms:
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Figure 19: Phase congruency is the measure of angular alignment of all voices at
each time point of the analysis. The diagram demonstrates the phase measures for
all voices at a single time point.
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Figure 20: Phase congruency of the isochronous beat pulse train of Figure 15.

“The salience of a perceived meter, or the probability of a given met-

rical interpretation, is proportional to the sum (or some other aggregate)

of the salience of the pulse sensations that make it up. The most likely

meter to be perceived is the one with the highest predicted salience.”

[130, pp. 443]

In an earlier paper, Parncutt describes qualitatively such an algorithm using

direct summation of salience measures [128, pp. 135]. His pulse saliences are derived

from a heuristic (his equation 4 [130, pp. 434]) based on phenomenal (i.e. objective)

accent weighted by ordinal position within the pulse period. In contrast, phase

congruency measures use the magnitude and phase of the frequency present in the

entire rhythmic signal.

A similar conception to phase congruency has been taken by Todd [103] with

respect to Marr’s primal sketch theory of human vision [95]. As Todds filters are

causal, a computational measure of his “temporal coincidence” across filters is not

possible, instead resorting to qualitatively assessing “temporal contiguity” visually,

using scatterplots of filter peak responses over the time-frequency plane.

The phase congruency measure of the isochronous beats (impulses) from Fig-

ure 15 is demonstrated in Figure 20. As noted in section 3.3.3, the local energy and

phase congruency functions will indicate points where the impulses fall due to singu-

larities having a high modulus at high frequency scales and a constant phase across

frequency scales. Each impulse point achieves the same relative phase congruency

measure; consistent with the isochronous (i.e. indistinguishable) nature of the beats.

The slight hump between each impulse is from the second harmonic modulus.
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3.5 Summary

The description of the traditional Fourier transform frequency analysis has been

presented to indicate the extent of its analysis abilities. Unless the signal under

analysis is periodic with respect to its analysis window, any change in the signal’s

frequency will be distributed across the harmonic components of the signal.

In order to analyse musical rhythm in terms of periodicities, a perspective of

the rhythm independent of the acoustic component of the signal has then been

detailed. Here the rhythm of a musical recording has been argued to be able to

be represented as the amplitude modulation of changing frequencies in the acoustic

range. The frequency characteristics of this amplitude modulation is the signal that

must be analysed (not the acoustic carrier) to reveal the time dependent nature of

musical rhythm.

Rectification of the amplitude modulation can be used to separate the rhythm

from the acoustic element. Alternatively in prepared performance situations, the

rhythm can be transduced from sensors, measuring the intensity of the instant of

the beat, which is generalised as a measure of intended accent. Intention has been

defined to refer to the conceptual beat structure prior to making those beats audible

(by using it to modulate the acoustic carrier). This leads to the confirmation of the

view that a train of impulses can represent the rhythm in signal processing terms.

The theory of non-orthogonal wavelet transforms has then been reviewed, with

regard to its applicability to rhythm analysis. The wavelet transform enables change

in frequency to be represented in 2-D plots of dilation scale and time, separately

indicating magnitude and phase components. This enables rhythm to be formally

viewed in terms of the frequency domain. Additionally, the magnitude and phase

representations enable computation of a measure of phase congruency at each time

point.

This is a new application of phase congruency and a new approach to rhythm

analysis, unifying signal analysis and several music psychology theories. The ap-

proach has been demonstrated by analysing the primary case of an isochronous

impulse train. The next chapter assesses the validity of such a multiresolution rep-

resentation by analysing and interpreting a variety of musical rhythms.



Chapter 4

Analysis of a Corpus of Musical

Rhythm Examples

Morlet wavelets were described in Chapter 3. This chapter examines their appli-

cation to the analysis of musical rhythm and shows their usefulness on a range of

musically typical examples.

Firstly, examples of simple rhythms created from dynamic and durational accents

exhibiting changing meters are analysed. Rhythms undergoing asymmetrical ritar-

dando and accelerando and using agogic accentuation are then demonstrated. The

ability of the CWT analysis to display grouping of rhythms is then demonstrated on

an anapestic rhythm. I then assess the degree to which deviations from strict quan-

tization of a complex rhythm are revealed. A well known complex rhythm is then

analysed, first in terms of its quantized, notated, rhythmic values, then analysing a

performance of the same rhythm, preserving the rubato. This chapter is an expan-

sion of examples of analysis of rhythms reported previously [162, 163, 165, 161].

The examples analysed are monophonic rhythms. The term monophonic is used

here to mean a single rhythmic line, i.e as performed on a single pitch drum, or a

rhythm tapped out on a tabletop. Even on such an impoverished sound generator,

accentuation is still possible, e.g from intensity or timbre variation. Therefore the

rhythms analysed are considered as a functional whole, exhibiting structure, includ-

ing the possibility of syncopation through accenting, while being irreducible to parts

played by different drums, limbs or performers.

The perception of musically typical rhythms is achieved by segregation of the

received sound complex into separate streams of common sources [10]. It is thereby

hypothesised that listeners use timbral, spatial localisation, pitch, tempo and other

87
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Figure 21: Polyphonic rhythms will segregate into parallel streams from objective
differences between sources.

objective differences between sound sources to distinguish between independent

rhythmic patterns. Thus, the process of perception of a polyphonic rhythm (for

example a performance on a drumkit) would be represented by a number of wavelet

analyses, one per line, running parallel in time. Where the listener can interpret

a rhythm as comprising multiple rhythmic lines, rather than variations in accen-

tuation of a single rhythm, this introduces two or more dimensions of independent

rhythms. This concept is illustrated in Figure 21.

4.1 Implementation Details

The example rhythms presented in this chapter were either synthesised with the

Common Music/Common Lisp Music software synthesiser [178, 179], or converted

from MIDI files of performances on MIDI drumpads, into an impulse train. The

impulse train is saved to a sound file at a sample rate of 200Hz, giving a mini-

mum timing resolution of 5 msec. When sampling performance data (section 4.5.2),

400Hz was used, with 2.5 msec resolution being close to the limit possible with

MIDI, regardless of sampling errors from machine load. The wavelet transformation

typically extended over 10 octaves to a maximum wavelet wavelength (from its in-

ternal frequency ω0 of Equation 14) of 2048 samples (10.24 seconds). The minimum

wavelength was fixed at 4 samples (20 msec) as this still indicates impulses and

represents most perceptible timing. Many of the test rhythms are drawn from other

researcher’s published examples, in order to allow comparison with other work, and
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Rhythmic Value IOI Ratio to e Scale a Dilation 2a/8

Quaver 1.0 0 1.0
1 1.0905

Septolet Crochet (7 in time of 4) 1.1429 2 1.1892
Triplet/Sextolet Crochet (3 in 2/6 in 4) 1.3333 3 1.2968

4 1.4142
Dotted Quaver 1.5 5 1.5422
Quintuplet Crochet (5 in 4) 1.6 6 1.6818
Alternative Septolet Crochet (7 in 6) 1.7143 7 1.8340
Crochet 2.0 8 2.0

Table 3: Musical rhythmic values, their relative ratio, and the degree of match to 8
voices per octave.

to begin to establish a standard rhythmic test corpus.1

Kronland-Martinet’s analysis of musical sound [74] naturally suggested 12 voices

per octave (one per equal tempered semitone). However 8 voices are sufficient to

represent rhythmic variation possible within a doubling of beat frequency, within

current computational capabilities. In a manner analogous to the approximation

of equal temperament tuning systems to just intonation [189, 132], equal divisions

of the rhythmic “octave” approximate low prime ratio time intervals typically con-

sidered within Western music theory [92]. As is apparent from their theoretical

ubiquity, these “just” time ratios form the majority of the interval perception cate-

gories, so the 8 voice equal division approximations are appropriate.

Typical rhythmic values, their ratios and equal temperament approximations

appear in Table 3. A special unequal wavelet dilation could be adopted, choosing

scale parameters only to match expected ratios of rhythmic subdivisions. However,

for this research, regularly spaced scales are used in order to indicate expressive

timing which can deviate from the categorical rhythmic frequencies. Earlier plots

of the figures in this chapter with 16 voices per octave did not significantly improve

the interpretation of the scaleogram/phaseogram pairs.

The Morlet wavelet transforms were implemented initally in C and subsequently

in Octave, a public domain Matlab2 workalike. From a sound file of impulses, these

1DORYS — a Database of RhYthmic Stimuli is available from
http://www.cs.uwa.edu.au/~leigh/Research/Software/DORYS.tar.gz.

2The mathematical language Octave can be found at http://bevo.che.wisc.edu/octave/.
Matlab, Mathematica and Postscript are registered trademarks of their respective owners.
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programs produce three output files for the magnitude, phase and phase congru-

ency. Encapsulated Postscript plots of the two and a half dimensional scalograms

and phasograms, and the one dimensional phase congruency plot were produced by

Mathematica code. The C version computed the wavelets and the convolution in

the time domain, while the Octave version constructed the wavelets in the Fourier

domain and multiplied those with a precomputed FFT of the signal. This second

version produces a run-time performance improvement due to the n logn time com-

plexity of the multiplication and inverse FFT, but this requires the input data to

be first padded at either end of the signal to a dyadic (2n) length for the FFT. The

padding consisted of reflected portions of the signal to create a repeated rhythm

in order to preserve the low frequency strata from edge impulses. The displayed

scalograms and phaseograms are then trimmed to their original length.

The abscissa of the scalogram plots time in samples, and the ordinate plots the

frequency scale of the dilation of the wavelet in number of samples of its time period.

At the highest scales (the highest y-axis values) the time window is very short,

two samples, and the original impulse is apparent. At lower scales, the frequency

localisation is more apparent and the rhythms are seen as parallel frequency bands

corresponding to the frequencies implied by impulses at different intervals.

4.2 Generated Primitive Examples

Section 3.3.3 demonstrated the analysis of an isochronous pulse. In this section,

other simple synthesised rhythms are analysed to further demonstrate the represen-

tational abilities of multiresolution analysis on typical rhythmic entities.

4.2.1 Changing Meters with Dynamic and Durational Ac-

cents

Intensity Accents and Changing Meters

Figure 22 illustrates a CWT of a rhythm composed of meters changing using ac-

cented downbeats. The IOI’s remain equal across the pulse train (70 samples), only

the beat that is accented is changed. Care was taken to ensure the rhythm does

not change exactly in the middle of the analysis window, to avoid any artifacts

arising from a signal symmetry within the window. The figure shows that a ridge
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Figure 22: Scalogram and phasogram of a CWT of the rhythmic impulse function of
a meter temporarily changing from 3

4
to 4

4
. The time period of the meter transition

is indicated by the change in the slight energy scale corresponding to the downbeat
interval.

of frequency scales corresponding to the interval between the accented beats (210

samples) is established during the 3
4

meter period, dips downwards for the 4
4

(280

samples downbeat interval) and returns to the previous scale, demonstrating the

zooming of the CWT and its ability to track a short term change in the frequency of

the accented downbeats. The phasogram indicates congruence over ranges of scales

corresponding to the rhythmic band.

The phase highlights the points in the signal, where a frequency (meter) change

occurs. The phase oscillates at the lower scale during the 4
4

region between beats

13 and 33. The non-causal nature of the convolution in the CWT pin-points the

rhythmic alternation. A human listener can only retrospectively assign beats 13 and

33 as beginning points of a change in meter following contradiction of their expected

downbeats. The non-causal CWT is imitating this behaviour.

The change in meter does not indicate a higher phase congruency measure at

beats 13 and 33 as might be predicted. The phase congruency measure shown

in Figure 23 is of a similar version of the rhythm, with significantly longer initial

and following 3
4

patterns, unequal in number to create analysis window asymmetry.

The long 3
4

patterns ensure the initial phase effects from the window edges do not
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Figure 23: Phase congruency of the varying meter rhythm of Figure 22, extended
with 30 bars of 3

4
preceeding and 50 bars following. The 4

4
region can be identified

by the lower congruency values of the accented downbeats.

interfere with the congruency value. The meter change is identifiable by the lower

congruency values for the accented downbeats of 4
4

patterns. The congruency is

being measured at each time point with respect to the entire signal.

Durational Accents and Changing Meters

To test the CWT behaviour on a durational accent, that is, a lengthening of the

onset to offset time of each beat, an energy square wave per beat was used instead of

a single impulse. Such an input signal will be the result following rectification of a

sound file. A beat was formed with a 50% duty cycle, the accented beats extending

the duty cycle to 71%, while intensity and IOI were held constant. The rhythm

function input to the CWT is shown in Figure 24, again demonstrating a changing

meter, from 4
4

to 3
4

and back. The transformed result shown in Figure 25 reflects the

periodicity created by the accent at the downbeat of the measure. Here the rhythm

frequency rises slightly at the point where the meter changes. Inspection reveals

the frequency scale again corresponds to the IOI between the 71% duty cycle square

waves. Substituting an amplitude modulating signal (as shown in Figure 5) for the

square wave produces a similar scaleogram, and a phaseogram with much less high

frequency phase variation, as is to be expected.

4.2.2 Ritardandi et Accelerandi

The ability of the wavelet transform to reveal a synthetically generated ritardando

and a following accelerando is demonstrated in Figure 26. Every fourth beat is

intensified (50% “louder” with respect to a normalised intensity scale) while the
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Figure 24: Plot of the rhythm energy square wave representation to be transformed
with the CWT. Accents are created by lengthening the duration (the non-zero pe-
riod) of the downbeat. The meter is temporarily changing from 4

4
to 3

4
.
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Figure 25: Scaleogram and phaseogram of the rhythmic energy square wave function
shown in Figure 24. The rising frequency scale circled in the region of 1200–2000
samples (time axis) and an IOI range (y-axis) of 235 corresponds to the periodicity
of the 3

4
meter. This range is marked at samples 1541 and 1776 on the scaleogram.
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Figure 26: Time-Scale scalogram and phasogram display of a CWT of the rhythmic
impulse function of a ritarding and then accelerating rhythm.

tempo begins at the 16th beat to slow linearly from 86 BPM to 42 BPM (at the

30th beat), holds at 42 BPM for 14 beats, and returns to 86 BPM by the 52nd beat.

Frequency scales at the downbeat IOI (initially 280 samples interval) are mildly

indicated in the scalogram and are more obvious in the phasogram at the same scales.

This example demonstrates the tracking of a changing frequency due to the zooming

nature of the scaled wavelet functions and the ability to discriminate frequencies

created by regular, sparsely located, accented beats simultaneously changing over

time.

The identical ritard/accelerate behaviour is demonstrated without intensity ac-

cents in Figure 27. The mild periodicity of the accented downbeat in Figure 26 does

not occur, so only the highest magnitude corresponding to the IOI appears. The

phaseogram pinpoints the events at which rate changes have occured, due to the

non-causal nature of the wavelet.

The nature of a ritard has been the cause of some debate [32, 77]. A simple

direct physical motion metaphor for a ritard is used here to demonstrate frequency

tracking of the CWT, without assuming that a performed ritard will have such a

frequency modulation. It remains a future research task to determine if the CWT

will accurately reveal ritard patterns used by performers.
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Figure 27: The same ritard-then-accelerate rhythm of Figure 26 without intensity
accents, all impulses are the same weight.

4.2.3 Agogics

To test the wavelet analysis behaviour on a rhythm exhibiting agogic accent, the

same ritard and then accelerate tempo curve in section 4.2.2 is applied to a quaver

pulse, with a deviation away from isochrony every fourth beat (see Figure 28).

This perturbation consists of an additional delay of 6% from the isochronous beat.

Two different forms of agogic accentuation are demonstrated here. In the first, the

degree of agogic deviation is scaled to be dependent on the tempo curve, i.e relational

invariance, according with the proposal by Repp [142]. In the second, the event is

shifted by a fixed amount independent of tempo in a similar manner to the work of

Bilmes [6, 7, 8].

In either case, the example deviation used here is audibly quite pronounced, bor-

dering on breaking the perceived periodic nature of the rhythm. Informal listening

tests of the two rhythms by the author favour the dependent model. However, there

is some debate against Repp’s model from Desain and Honing as to whether there

is a direct proportionate relationship between IOI and tempo [30]. The studies by

Repp, and Desain and Honing, concerned complete pieces performed at different

tempos, whereas the rubato presented here is far more local and varying over the

phrase.
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Figure 28: Implementation of agogic accent. The isochronous IOI is notated by
n = 350 msec, the agogic deviation by λ = 20 msec, with a correction applied on
the next IOI to avoid accumulation destroying longer term rhythmic structure. This
canonical rhythm then has a tempo deviation applied to it.

In Figure 29, dependent agogic accenting is identifiable by the clear regular fre-

quency modulation of the IOI ridge. However there does not appear an identifiable

lower frequency activated scale corresponding to the rate of repetition of the agogic

accent in a manner similar to intensity or duration accenting of section 4.2.1. Shift-

ing by smaller ratios resulted in less ridge modulation, but still did not produce

an accent period. In comparison, Figure 30 shows agogic accenting independent of

the tempo curve, having noticeably less prominent modulations during the slower

tempo region. While it is tempting to propose that this effect is caused by a mul-

tiresolution process mediating rhythm perception, a more logical explanation is that

the perturbation is maintained at a similar ratio with respect to the underlying beat

IOI. The scalogram’s logarithmic dilation makes this effect clear.

4.3 Grouping of an Anapestic Rhythm

Wavelets not only give a reference to the periodicies from accent, but also the rhythm

from grouping over longer time domains. A simple example of grouping is an anapes-

tic rhythm.3 Analysis of a similar rhythm has been demonstrated by Todd [103,

(example A, figure 9, pp. 46)]. Examining the results in Figure 31 reveals two high

energy scales, the highest corresponding to the beat IOI of 49 samples as expected,

and the lower corresponding to the repeated period of the short-short-long group

3A repeated three beat rhythm, short-short-long e e q.
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Figure 29: CWT of a rhythm composed of the same ritard-then-accelerate behaviour
(“tempo curve”) of Figure 27, with an agogic accent stretching every fourth beat
by 20 msec, then applying the rubato, such that the final agogic deviation is rubato
dependent and typically more than 20 msec. Three of the agogic accents are circled.
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Figure 30: CWT of the same rubato rhythm as Figure 30 with an agogic accent
stretching every fourth beat by absolute 20 msec, after rubato has been applied.
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(198 samples as marked on the figure and expected). The most activated lower fre-

quency scale extending over the analysis window corresponds to that anapest period.

Due to estimation error in determining period from frequency scale, the computed

period is marked on the scalogram at samples 1000 and 1215. Higher frequency

sampling rates will reduce this reconstruction error. Other compound rhythms such

as 7
8

similarly are indicated by scales corresponding to the component periods (i.e 2

and 3) and the entire group period.

Due to the shift invariance of the CWT, if the rhythm is begun with the long beat

leading the rhythm, forming a dactyl (long-short-short), the scalogram result will be

identical, simply shifted in time. This is contrary to listener experience and music

theory. For the short repetitions presented, the listener would remember the phase

of the rhythm and group appropriately, with the caveat that Parncutt has reported

wide deviation in listeners’ beat phase preferences [130]. Clearly the CWT is not

emulating the formation of higher order groups, simply indicating quasiperiodic

repetitions of events. Construction of perceptually based grouping structures using

a time-frequency representation is addressed in Chapter 5.

The distinctive phase measures at the beginning and end of Figure 31 are an

artifact from the edges of the analysis window, effectively showing the periodicity of

the entire analysis sample. The scalogram shows the energy measures of this artifact

is low. Note that this differs from the signal window periodicity of the STFT, which

is assuming the signal is entirely harmonic to its analysis window. The phaseogram

indicates the periodicities of the components by the repeating progression through

the colour spectrum.

4.4 Expressive Timing

4.4.1 Comparison of Performed and Quantized Versions of

a Rhythm

To evaluate the performance of the CWT on a rhythm exhibiting expressive timing,

an example previously used by Desain and Honing with their connectionist quantizer

[25, pp. 154] was adopted (Figure 32). The timing data shown in Table 4 assigned

to desain-unquantized-rhythm was normalised (by dividing by the first value,

as per Smoliar’s approach [167]), converted into a pulse train, and analysed as

shown in Figure 33. The quantized version desain-quantized-rhythm is shown
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Figure 31: Analysis of an example of an anapestic rhythm. The anapest motive
(short, short, long) period in the test rhythm was 200 samples. The computed
period is marked on the scalogram at samples 1000 and 1215.

& Q Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Q
3

Figure 32: Desain and Honing’s Connectionist Quantizer rhythm.

resulting from the standard 20 iterations of Desain and Honing’s Micro Connectionist

Quantizer as it has the tendency to not totally converge to integer ratios. This

rhythm was also normalised and converted to an impulse train, resulting in the

CWT magnitude and phase diagrams of Figure 34.

The magnitude display of the unquantized data demonstrates noticable bends in

ridges between 300 and 600 samples, slowing to a local minima — half-way between

the last triplet quaver and the first quaver — this can be seen as a graphic display of

the “shaping” of a rubato. This beat pattern (three triplet quavers followed by two

quavers) in the quantized data has a more dramatic and rapid transition between the

two rates, without the bend towards a halfway point. Likewise, the effect of phrase

final lengthening (Section 2.2.7) is apparent on the unquantized rhythm in the slight
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Figure 33: The scaleogram and phaseogram results of the unquantized data in Ta-
ble 4 without intensity accents, all impulses are the same weight. The triplet to
duplet quaver transition is circled, as well as the slowing of the final semiquaver.

0 200 400 600 800 1000 1200
Time in Samples

512

256

128

64

32

16

8

4

S
ca

le
a

s
IO

I
R

a
n

g
e

in
S

a
m

p
le

s

0 200 400 600 800 1000 1200

512

256

128

64

32

16

8

4

Phase of ∼êAnalysedRhythms êdesain −quantized

0 200 400 600 800 1000 1200
Time in Samples

512

256

128

64

32

16

8

4

S
ca

le
a

s
IO

I
R

a
n

g
e

in
S

a
m

p
le

s

0 200 400 600 800 1000 1200

512

256

128

64

32

16

8

4

Magnitude of ∼êAnalysedRhythms êdesain −quantized

Figure 34: The scaleogram and phaseogram results of the quantized data in Table 4.
The triplet to duplet transition is an immediate change from beat 5 to beat 6. The
phrase final lengthening has been removed by the quantization.
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(setf desain-unquantized-rhythm

’(11.77 5.92 2.88 3.37 4.36 3.37 3.87 6.0 6.34 2.96 2.8 2.96 3.46 11.93))

(setf desain-quantized-rhythm

’(12.02 6.00 3.03 3.02 3.98 3.97 3.98 5.97 5.96 3.07 3.08 2.95 2.98 11.99))

;;; normalising by the first interval indicates Smoliar’s criticism

(defun normalise-rhythm (rhythm datum)

(mapcar #’(lambda (n) (/ n datum)) rhythm))

;;; Make a Common-Music thread out of the IOI’s

(thread desain-unquantized ()

(dolist (beat (normalise-rhythm desain-unquantized-rhythm

(first desain-unquantized-rhythm)))

(object rhythm-onset note ’c4 rhythm beat duration beat

amplitude 0.95)))

Table 4: Common Music versions of the original input data used by Desain and
Honing [25, p.167] for their quantizer and the quantized version following a run of
their program.

dip of the scales corresponding to the IOI between the penultimate semiquaver and

the final crochet.

The shaping of the triplet to duplet transition is also apparent comparing the

phase congruency measures of the two versions in Figure 35. The equal intervals

of the quantized version produce distinct ranges of equal congruency of phase over

the 300–400 sample region and the 450–600 sample region. Since the wavelet is

non-causal, the congruency measure is computed from phases derived from intervals

forward and and backward in time from each translation sample. Therefore, the

first triplet quaver (peak 5) is of the same phase congruency as the earlier adjacent

semiquaver (peak 4), while the congruency is common at the second (peak 6) and

third (peak 7) triplet quaver and the following quaver (peak 8). Whereas, the

unquantized version’s phase congruency measure is closely matched across nearly

all of the beats. Although such general observations can be made regarding the

phase congruency measures, in general it has been difficult to draw associations

between phase congruency and the underlying musical structure that the rhythms

embody.
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Figure 35: Comparison between the phase congruency measure of the unquantized
(line 1, analysed in Figure 33) and quantized (line 2, analysed in Figure 34) versions
of Desain and Honings rhythm.

4.4.2 Analysing Rubato Deformations of a Complex Rhythm

Figures 37, 38, 39 and 40 demonstrate the application of synthetic rubato to another

of Desain and Honing’s example rhythms, in this case, pre-quantized.4 This rhythm,

notated in Figure 36, establishes a high energy scale that corresponds to the dotted

minim grouping from the duration of the motive. This is indicated in the relative

energy profile taken at a representative time (one quarter of the window length) in

Figure 38. The scale axis is marked with rhythmic values according to a tempo of

100 BPM, the original rate of the synthesised rhythm. It is significant to note that

in Figure 37 the scale continues for the entire analysis period, since the grouping of

the beats remains the same, even with variations in the rhythm.

The same rhythm is then perturbed with a complex tempo curve indicated in

Table 5. The rhythm begins at 100 BPM as the quantized version, drops to 50 BPM

on the fifth beat, accelerating to 80 BPM by the twelfth. It then jumps to 150 BPM

and stays at that rate for the rest of the rhythm. The effect of this quite severe

tempo curve on an isochronous crochet pulse is shown in Figure 39, and the effect on

Desain and Honing’s rhythm is demonstrated in Figure 40. This last figure reveals

4Taken from Desain and Honing’s webpage http://www.nici.kun.nl/mmm/SOUNDS/P31623.AU,
and also appearing in [31].
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Figure 36: Desain and Honing’s rhythm (top stave), producing a clear sense of
grouping (lower stave). The functional group is underlined.
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Figure 37: CWT analysis of the prequantized rhythm of Desain and Honing of
Figure 36 without intensity accents.
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Figure 38: Demonstration of the activation energy distribution at the 600th sample
time point and its concordance with grouping structures of the rhythm of Figure 36.
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;; rubato perturbation to apply to Desain and Honings rhythm

(setf short-rubato-tempo-curve

(tempo 0 100.0 3 100.0 5 50.0 12 80.0 13 150.0 17 150.0

pulse ’q update after))

Table 5: Common Music version of the tempo curve applied to the rhythm of
Figures 36 and 37.
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Figure 39: The tempo curve of Table 5 when applied to an isochronous crochet
pulse.

the dotted minim rate deforms according to the tempo curve. A ridge of scales starts

at the point of first rubato (approximately the 600th sample) corresponding to an

interval of 535 samples and accelerates to an interval of 430 samples at the 2400th

sample time.
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Figure 40: CWT analysis of the rhythm of Figure 37 after application of a synthetic
rubato. The acceleration of the scale corresponding to the dotted minim is circled.
In this figure, the scale axis is plotted in IOI spans as notation is only meaningful
and can only be assigned according to a predetermined tempo, which in this case
will be constantly changing.

4.5 Comparison of a Performed and Generated

Musical Rhythm

4.5.1 Greensleeves

The previous rhythms have been short simple motives, chosen to independently

demonstrate each effect. To demonstrate the scalability of the approach, the analysis

is demonstrated on typical musical examples. In this section, a well-known rhythm

example is analysed — “Greensleeves” (Figure 41, also used by Roberts [146, pp.

127]). It is composed of multiple IOIs grouped in musically typical proportions.

Figure 42 demonstrates the rhythm synthesised with canonical IOIs directly from

the notation. The scalogram indicates the hierarchy of frequencies implied at each

time point due to the IOIs falling within each scaled kernel’s support.

The scale corresponding to the period of the 6
8

measure is most energised from

the times of 0–2000 samples. Inspection of the activated scale corresponding to the

dotted crochet in the time period of 2000 to 2800 samples shows this arises from

a common interval of 300 samples which falls between the 17th and 19th beats,
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Figure 41: The rhythm of “Greensleeves”. The interval of a dotted crochet appearing
in the scaleogram of Figure 42 from samples 2000–2800 is shown in terms of the
notation.

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800
Time in Samples

0

rx3xx .ee .qq .hh .ww .W

T
e

m
p

oê
B

e
a

ts

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800

0

rx3xx .ee .qq .hh .ww .W

Phase of ∼êAnalysedRhythms êgreensleeves_accent

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800
Time in Samples

0

rx3xx .ee .qq .hh .ww .W

T
e

m
p

oê
B

e
a

ts

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800

0

rx3xx .ee .qq .hh .ww .W

Magnitude of ∼êAnalysedRhythms êgreensleeves_accent

Figure 42: Magnitude and Phase of Greensleeves as notated with strictly rational
IOIs. The period of the dotted crochet is shown aligned on the beat occuring on
sample 2201, matching the next dotted crochet beat falling on sample 2501. The
tempo of 60 BPM was chosen purposefully to create a dotted crochet IOI of 300
samples to aid finding the beats in the output sound file.
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Figure 43: The impulse input produced from the velocity and timing parameters of a
MIDI file recording of the rhythm being tapped on a drumpad without metronome.
Note this rhythm uses 400Hz sampling rate, to reduce quantization of the perfor-
mance, but is performed at a faster tempo than Figure 42.

18th and 20th beats, 19th and the 21st beats and so forth. With the return of the

semiquaver/quaver figure (beats 24 and 25)), the scale is modulated in amplitude,

but the recurring dotted crochet interval throughout the rest of the passage continues

the scale activation. Of note is the wavelet’s recognition of the overlapping dotted

crochet intervals, independent of their metrical position, as notated in Figure 41.

The dotted crochet is, of course, half the duration of the 6
8

meter the piece is

notated in. Such a rhythmic figure would not normally be considered as a theoreti-

cal group. However, this interval is essential to establishing the expected theoretic

grouping of the measure. The variety of periodic interpretations adopted by listen-

ers such as in Parncutt’s study [130] suggest listeners may simultaneous group at

both rates, or as indicated here, change interpretation. The scales for IOI between

consecutive beats also receive an energy distribution. Clearly the CWT is establish-

ing close to the total feasible number of parallel strata capable of being evoked in

the mind of the listener. In a human listening scenario, enculturated interpretative

mechanisms are then bought into play in order to direct attention towards those

strata that are most salient.

4.5.2 Greensleeves Performed

In comparison, in Figure 44, the CWT is demonstrated on an expressive performance

of the rhythm of Greensleeves (Figure 43), tapped on a single drum-pad, without

metronome at a medium tempo, roughly 96 BPM, converted from a standard MIDI

file at 400Hz sampling rate as described in section 4.1.
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Figure 44: Resulting Scalogram and Phaseogram from Figure 43. Intervals cor-
responding to dotted crochet (362 samples) and dotted minim (724 samples) are
marked.

Despite a different tempo, moderate rubato and significant variation in beat am-

plitude, features common to the canonical and performed versions can be discerned.

The intervals of the dotted crochet and dotted minim appear again (362 and 724

samples respectively) and are marked on Figure 44 at samples 363, 1087, 2334, 2696,

2561, and 2923. There is a close but imperfect match on the dotted minim due to

the rubato. The varying certainty of this period can be seen in the scale for 724

samples varying in energy across the analysis window. The half measure dotted

crochet continues to be highly activated and extends the entire analysis window,

with a slowing at the last two beats.

Inspection of the phase congruency (Figure 46), reveals the variation in the

impulse weighting and the rubato produces less symmetrical events and therefore

produces less overall phase congruency. Therefore the steadily increasing phase

congruency measures for beats 13 to 17 seen in Figure 45 do not appear.



CHAPTER 4. ANALYSIS OF A MUSICAL RHYTHM CORPUS 109

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800
Time in Samples

0

0.2

0.4

0.6

0.8

N
o

rm
a

lis
e

d
E

n
e

rg
y

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800
Dimensionless Phase Congruency of ∼êAnalysedRhythms êgreensleeves_accent

Figure 45: Phase Congruency plot of the rhythm analysed in Figure 42.
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Figure 46: Phase Congruency plot of the rhythm analysed in Figure 44.

4.6 Summary of Results

Analysing the example rhythms in this chapter has demonstrated the illustrative

abilities of a multiple resolution approach. The set of rhythms examined con-

tains examples taken from previously published research and synthetic rhythms

and is intended as a representative and reasonably complete sample. The synthetic

rhythms have been chosen to independently illustrate rhythmic parameters described

in Chapter 2. Analysis of this database of rhythms has indicated the degree to which

musical knowledge and behaviour are made explicit by a time-frequency domain.

Analysis has indicates the quantity of information inherent in the rhythm itself,

prior to perceptual processing. This enables a systematic evaluation of a perceptual

model of rhythm interpretation.

Multiple resolution analysis of rhythms represented as impulse trains undergoing

fairly severe asymmetrical rubato has been shown to clearly track tempo deforma-

tions. This arises from the non-causal nature of the analysis and the zooming reso-

lution of the CWT. Periodic accenting using duration or intensity — both increasing
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signal energy at local time regions — is tracked by energy at scales matching the

rate of accent, and correctly represents the effect under tempo modulation.

The local effect of agogic accent is apparent with the deviation of the scales

corresponding to the IOI. However this deviation from metricality, when applied

periodically, does not produce energy in scales corresponding to the rate of its rep-

etition. The logarithmic scale representation makes agogic accenting appear more

clearly when it is dependent on the (possibly changing) tempo of the rhythm. This

tends to correspond to proportional scaling of timing with tempo as reported by

other researchers [142, 30, 6].

Complex rhythms produce groupings that include those rates listeners would

group on. However, there are other frequencies that correspond to component

rhythms making up a compound rhythm, frequency doubled artifacts of the wavelet,

or other rates corresponding to intervals between beats not attended to. This repre-

sents parallel multiple hypotheses that listeners construct in the process of rhythmic

interpretation. The selection of salient strata from the multitude is clearly the next

goal to be addressed.

The CWT demonstrates the effect of removing expressive timing, as shown by

analysing a rhythm following quantization. The effect of such quantization is to

“take the bends out of the tempo curve”, effectively conforming the rhythm strata

to a smaller set of scales without the degree of variation of the original.

Finally, applying the CWT to an accepted complete rhythm, has shown how

multiple periodicities arise in a typical rhythm. Inspection of the results has shown

that these strata do arise from intervals in the rhythm, taking into account over-

lapping intervals and representing simultaneous rhythmic strata. In that sense, the

results represent listening with an almost infinite context, or memory, while human

listeners will aim attention at the salient strata alone. Comparing a performed ver-

sion has demonstrated the robustness of the analysis, allowing common temporal

features to be identified and compared between the performed and synthetic versions

of the rhythm.

Phase congruency has been shown to be a time-point measure of symmetry of

the rhythm over multiple time scales. This can be used for assessing the relationship

of a single beat, or group of beats, to the remainder of the signal. These congruency

measures have been made over the full dilation scale range. While general features

can be deduced from this phase congruency measure, it does not represent a direct

interpretable measure of a listener’s importance of the beat within its context.
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Figure 47: Phase congruency of Desain and Honing’s rhythm in Figure 37 calculated
over the reduced IOI range of 128 to 512 samples (two octaves), ignoring the IOI
ranges which react to the impulse region.

While the idea of congruence of the phases of frequencies has appeal, the impulse

points will always dominate the congruency measure, producing congruency peaks

at each impulse. Even reducing the scales over which the phase congruency is calcu-

lated, only using scales with time intervals longer than rhythmic rates still produces

a phase congruency measure heavily biased towards the impulses and the intervals

following them. This is shown in Figure 47. A form of phase congruency mea-

sure based on those strata which are most salient to rhythm perception is required.

One such form is local phase congruency which is detailed with other interpretative

models selectively using time-frequency input in the next chapter.



Chapter 5

Interpretation of Time-Frequency

Representations of Musical

Rhythm

In the previous chapter, interpretations from the CWT transform were performed

manually by the author. In this chapter several related approaches to using the

time-frequency representation of rhythm for automatic interpretation are detailed

and assessed. As a minimum demonstration of interpretation, the CWT is used

to determine the tactus from several rhythms. This tactus is verified by using

it to compute a foot-tap to accompany the original rhythm. This foot-tapping

is demonstrated graphically. The intention in this chapter is to create a scenario

to formalise and then test such interpretation hypotheses in accordance with the

scientific method as close as possible. To that end, example rhythms are used

where a clear tactus is already commonly agreed and can be compared against the

computed version.

5.1 Tactus determination

In order to build and automatically interpret robust models of musical time (at

least as understood within Western common practice conception), it is assumed

that a fundamental requirement is the determination of the underlying tactus rate

listeners will typically tap at. While notions of bell-lines as time-keeping references

in non-western music may counter its universality (see section 2.2.5), the tactus can

112
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be considered as an isochronous beat or pulse that is the conceptualised rhythmic

backbone in western music.

The tactus is claimed here to function as the carrier in classical FM theory [119].

An isochronous beat is a “monochromatic” rhythmic signal, and the performer’s

rubato constitutes a frequency modulation of this idealised tactus frequency. There-

fore, in performance the tactus of a rhythm is modulated but still elastically retains

semi-periodic behaviour. A means of extracting the rubato frequency modulation of

the tactus is required. This task is complicated by the fact that the rhythm, deter-

mined by the amplitude modulation function, only exists as onset time impulses. As

detailed in Chapter 3, the rhythm of an acoustic signal is its amplitude modulation,

typically extracted by rectification or by transducers sensing a performer’s actions.

In the ideal situation, the amplitude rectification will reveal the location in time of

each single beat per energy burst. This is essentially a sharpening of the energy

burst to a delta function (impulse) pin-pointing the event onset time.

Furthermore a number of interpretations of a particular rhythm are possible

from the different beat rates that listeners have the option of tapping to. As shown

in Chapter 4, wavelet analysis is capable of identifying many of the qualities of

musical rhythm from an input signal consisting of time separated impulses. In

particular, the multiple rhythmic strata are apparent. Within the context of signal

processing, peaks in the scalogram/phasogram are termed ridges, representing the

time behaviour of frequency components. A means of identifying and extracting the

ridge that constitutes the tactus is required.

The approach adopted in this chapter is structured as follows: First, several forms

of the multiple resolution technique of ridge extraction are described for determining

the preferred rhythmic strata to tap to—the tactus—and its frequency modulation

behaviour. These ridge extraction methods are stationary phase, modulus maxima

and local phase congruency. Following explanation of these methods, principles

applying to tactus are hypothesised and a simple algorithm implementing these

principles is described. The ridge extraction methods and tactus algorithm are then

tested on selected rhythms previously detailed in Chapter 4 and new examples.

After assessing these, the tactus so extracted is demonstrated producing foot-tapping

accompaniments and these are assessed. These steps are shown in the schematic

diagram of Figure 48.



CHAPTER 5. RHYTHM TIME-FREQUENCY INTERPRETATION 114

Magnitude 
(time-frequency coeffs)

Magnitude 
(time-frequency coeffs)

Continuous Wavelet
Transform

Continuous Wavelet
Transform

Phase
(time-frequency coeffs)

Phase
(time-frequency coeffs)

Rhythmic Signal
(sparse impulses)
Rhythmic Signal
(sparse impulses)

Stationary PhaseStationary Phase
Local Phase
Congruency
Local Phase
Congruency

Modulus MaximaModulus Maxima

Ridge CorrelationRidge Correlation

Tactus ExtractionTactus Extraction

Tactus Phase Foot-
tapping

Tactus Phase Foot-
tapping

Foot-tap
 (time points of taps)

Foot-tap
 (time points of taps)

Correlated Ridge 
(time-frequency coeffs)

Correlated Ridge 
(time-frequency coeffs)

Algorithm
=
Algorithm
=
Data =Data =

Figure 48: Schematic diagram of the multiresolution rhythm interpretation system.
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5.2 Extraction of the Rubato Frequency Modula-

tion Function

5.2.1 Review of Frequency Modulation Extraction from Ridges

A group of French researchers, Delprat [22, 21], Guillemain and Kronland-Martinet

[53], Tchamitchian and Torresani [180], Escudíe and others [37] (well summarized

by Mallat [94, Chapter 4]) have used points of stationary phase to determine a

ridge indicating the frequency modulation function of an acoustic signal. This de-

termines the frequency variations over time of the fundamental and a finite number

of partials.1

Analytic signals

Any real valued signal s(t) can be represented as non-uniquely separated into am-

plitude and phase components [21, Equation 3.1]

s(t) = As(t) cos(φs(t)), As(t) ≥ 0. (25)

The analytic form [54] of s(t),

Zs(t) = u(t) + iv(t),

where u(t) and v(t) form a Hilbert Pair (Equation 17), produces a signal with only

positive frequencies (Equation 18). Here of course u(t) = s(t). However Zs(t) is

completely characterised by the particular canonical pair [21] (As, φs), from Equa-

tion 19.

The real valued signal is recoverable from the analytic form since s(t) = u(t) =

<[Zs(t)] produces Equation 25 from Equation 19.

Instantaneous frequency

The analytic instantaneous frequency, ωs(t) of s(t) is a theoretical notion2 defined

as a positive derivative of the signal’s phase:
1Partials are considered the overtones or “harmonics” not neccessarily in strict harmonic ratio

to the fundamental [119].
2See Hahn [54, pp. 516] for a discussion of the validity of a considering frequency at an instant

in time.
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ωs(t) =
1

2π
φ′s(t) ≥ 0.

Instantaneous frequency will only be applicable to real-world signals that meet

the condition of asymptotism. An asymptotic signal is defined as one whose phase

changes significantly faster than amplitude with respect to time

|φ′s(t)| �

∣∣∣∣ 1

As
A′s(t)

∣∣∣∣ . (26)

Ridges

Two strategies to determine the ridge points are to either use a Gabor transform

or its dilated version, the analytic wavelet transform. The wavelet has been defined

by Morlet and Grossmann [52] and Kronland-Martinet [76] in the time domain

previously by Equation 8 and Equation 14.

Points of stationary phase tς are defined such that

φ′s(tς) =
1

a
φ′g(

tς − b

a
). (27)

In other words, the stationary phase points define where the rate of change of the

phase of the signal (φ′s) and the phase of the wavelet (φ′g) (their instantaneous

frequencies) are equal. The concept is illustrated in Figure 49. As the Morlet

wavelet is analytic (Equation 16), the phase is independent and the wavelet itself

can be represented as an asymptotic signal

g(t) = Ag(t)e
iφg(t). (28)

The stationary phase points form a ridge where

tς(b, a) = b, (29)

that has the property of describing the frequency modulation function of the signal.

The discretised version of the phase of the wavelet transform Ψ(b, a) = arg[Ws(b, a)]

(the phasogram) can be recovered due to the nature of the near-analytic mother
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Figure 49: Representation of the stationary phase condition. The signal time interval
between −π to π transitions will match the wavelet time support on the ridge and
indicate the signal frequency behaviour.

wavelet (Equation 14). The phase derivatives must be computed accounting for the

−π to π transitions, by adding back 2π at these time points. The phase allows

forming a condition to determine the ridge:

∂Ψ(b, a)

∂b
=
φ′g(0)

a
, (30)

the right hand side being the frequency of the analysing wavelet at scale a. That is,

when the signal instantaneous frequency equals the central frequency of the dilated

wavelet. Delprat et. al [21][pp. 649] note the ridge of the wavelet transform can be

extracted more precisely from the phase of the wavelet coefficients than the modulus

maxima. They propose an iterative algorithm from Equation 30 for the ridges

ai+1(t) =
ω0

Db ·Ψai(t)
, (31)

where Db is a discrete differentiation operator, ω0 = φ′g(0) from Equation 14 for

a constant frequency mother-wavelet, ai the scale at which the ridge occurs. The

algorithm is deemed to have converged when the iteration change is insignificant

[21][Eq 6.11, pp. 653].

A practical problem with this approach is comparing small value wavelet phase

derivatives to small value signal phase derivatives, within some acceptable measure

of equality with floating point hardware. For this research a more robust measure of

the stationary phase ridge condition (Equation 30) has been adopted by comparing

the reciprocal time support 2π/φ′s(t), corresponding to the instantaneous frequency
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of the signal, and the dilated wavelet scale a respectively. An intuitive notion of

equality is therefore when the time supports match within one sample difference

∣∣∣∣ 2π

Db ·Ψai(t)
− a

∣∣∣∣ < 1.0. (32)

5.2.2 Application to Tactus Determination

The chief motivation of previous ridge research was to reduce the computation of the

transform to only the ridges—the “skeleton”, being the analytic version of the signal

analysed—which can be achieved if the wavelet transform also meets the asymptotic

condition [21, 53, 94]. In that application, the signal analysed was the sampled sound

pressure profile. Additionally, signals composed of partials in close time-frequency

proximity—within the Heisenberg bounds of the wavelet—create interaction between

the partials ridges which prevents ridge separation [21, 94].

The motivation here is to extract the frequency modulation function for the

purpose of determining a principal rhythmic partial that corresponds to the tactus.

In this application, the rhythm signal is represented by sparse impulse points forming

a critical sampling of the rectified amplitude envelope as described in Chapter 3.

Extraction of expressive timing γ(t) from a performed rhythm κp(t) is achieved by

assuming the notated score rhythm (prior to performance) κc(t) is a non-simple yet

harmonically related carrier signal (possibly time-varying in its harmonic content)

which undergoes a modulation by an inharmonically related expressive function

κp(t) = γ(t)κc(t).

Chapter 4 demonstrated the decomposition of a rhythmic signal into signal com-

ponents corresponding to intervals between adjacent and non-adjacent beats. Due to

categorical rhythm perception reviewed in Chapter 2, the typical intervals between

beats will be close to integer subdivisions (2 or 3) of next shorter intervals. This

creates a quasi-harmonic relationship between intervals. This harmonic relationship

between onset intervals could be expected to ensure ridges do not interact signifi-

cantly and that these ridges can be associated to the common modulation source

γ(t).

The condition of asymptotism described in section 5.2.1 will be compromised

by the use of sparse impulses for the rhythm—effectively they are infinitely fast
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amplitude envelopes. The degree to which this compromises the ability to extract

worthwhile analysis data from musical rhythms has been a motivation of this re-

search.

5.2.3 Modulus Maxima

In addition to extracting a frequency modulation function from the rhythm by re-

stricting to points of stationary phase by the approach described above, ridges can

also be determined from peaks in the modulus of the CWT with respect to the

dilation scale axis

∂|Ws(b, a)|

∂a
= 0, (33)

when

∂2|Ws(b, a)|

∂a2
< 0. (34)

Alternatively, modulus maxima with respect to the translation axis is defined by

∂|Ws(b, a)|

∂b
= 0, (35)

when

∂2|Ws(b, a)|

∂b2
< 0. (36)

The dilation scale at each time instant will produce peaks due to the represen-

tation of the rhythm as impulse points, producing higher modulus points where

wavelet impulse responses interact, as illustrated in the energy profile of Figure 17.

Of the two modulus ridges methods, equation 33 more clearly reflects the nature of

musical rhythm, finding the peak magnitude scales at each time point, demonstrat-

ing time-varying frequency components. In comparison, equation 35 finds the times

of peak magnitudes for each scale.
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5.2.4 Local Phase Congruency

The theory of phase congruency when applied to rhythmic signals was investigated in

section 3.4. Phase congruency measures the match of phase angles between all scales

for each time point. A new modified form—local phase congruency—is proposed here

to have practical use in ridge determination. In this case, phase congruency over

smaller consecutive scales indicates the presence of a frequency component in the

rhythmic signal.

Due to the Gaussian shaped modulus profiles (see Figure 17), a wavelet transform

of an isochronous pulse will activate several consecutive scales, with a common phase

revolution (Figure 15). Therefore adjacent phase angles which are most in synchrony

are indicative of a spectral component. Local phase congruency is therefore proposed

as the “troughs” (local minima) of the absolute value of the first derivative of the

phase with respect to scale. These are found by

∂|∂Ψs(b, a)|

∂a2
= 0, (37)

which finds the local extrema. The trough points along the scale a are found by

∂2|∂Ψs(b, a)|

∂a3
> 0, (38)

given

∣∣∣∣∂Ψs(b, a)

∂a

∣∣∣∣ < εp, (39)

where εp = 0.05 is an absolute threshold to ensure congruency measures are close to

zero. The constant εm = 0.01 for Equation 22 ensures congruency is only performed

on scales and times where the phase is not ill-conditioned. This condition ensures

the amplitude is large enough to allow phase to be calculated with some precision.

5.2.5 Combining Ridge Perspectives

As figures in Section 5.5 will demonstrate, no particular ridge method produces

unbroken, unambiguous ridges across the analysis. Incomplete results from initial

investigations with modulus maxima ridges formed the incentive to develop station-

ary phase and local phase congruency ridges as a means to disambiguate the ridges.
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To that end, the combination of ridges derived from the three ridge methods aims

to improve accuracy of the ridges in the time-frequency plane. This is essentially

combining three perspectives originating from a single common source. It is notable

that the non-causality of the Morlet wavelet enables the phase to add a degree of

redundancy in ridge determination which is missing with real valued wavelets which

lack an independent phase.

A number of different methods of correlating the ridge methods were attempted:

a Generating a ridge only where the three ridges methods coincided (“and”

operation).

a Generating a ridge wherever proposed by a ridge method (“or” operation).

a Weighting contributions by each ridge method, such that the concurrence of

both stationary phase and local phase congruency, or modulus maxima alone

would suffice. Alternatively, any two of three would suffice.

As will be detailed in Section 5.5, no single combination method produced par-

ticularly better results. Finally ridge combinations were chosen manually for each

rhythm in order to achieve best results. This therefore creates a future research

agenda to devise a better method of combination. All results reported were achieved

by correlating using an “or” operation between the modulus maxima and either local

phase congruency or stationary phase or both. The “or” operation is justifiable in

the sense it does not throw information away, but instead is overly inclusive of false

ridges. Furthermore, all ridge methods are extracted from the phase and magnitude

components of the same representation, so the “or” operation does not represent a

divergence of perception between competing hypotheses.

5.3 Hypothesised Principles of Tactus

Because multiresolution analysis examines the whole signal over a contiguous range

of dilation scales, relatively simple rules or principles can be formulated which have

correspondance to music perception features described in Chapter 2. While axioms

or principles may at first sight seem problematically reductionist, the principles pro-

posed here extend over the entire rhythm, describing broad behaviours and matching

intuition. This is not to propose the necessity of tactus, merely its sufficiency in
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musical rhythms. Any rhythm can by decomposed into rhythmic strata, a subset

of which, matching notions of metricality, can be analysed in terms of strata and a

tactus interpreted from such.

First requirement is to formalise the concept of tactus continuity in order to

construct an algorithm to identify which ridge of several candidates constitutes the

tactus.

Principle 1 (Tactus Continuity)

The tactus perceived by the listener is a ridge that extends across the entire analysis

window of the rhythm considered.

That tactus is proposed to be the most ubiquitious pulse over the entire analysis

window. That is, the pulse rate which extends across the entire window length. This

is created by the wavelet transform constructively summing time intervals between

beats which reoccur in many overlapping relationships over the time period of the

rhythm. As noted in Section 3.3.3, ridges will receive most contribution from the

IOI, with minor contributions from intervals of a half or a third (double or triple

the pulse rate).

Principle 2 (“Fundamental” Rhythmic Frequency of Tactus Ridge)

The tactus perceived is the lowest frequency ridge conforming to the principle of

tactus continuity.

The requirement of the lowest frequency ridge avoids finding rhythms that are

harmonics of a fundamental rate (half or third speed) tactus. Furthermore, only a

(possibly modulating) tactus which extends beyond that of a beat interval is accept-

able. Otherwise we are simply capturing a pulse, rather than the lower frequency

rhythm. The lowest frequency continuous ridge allows for varying localised or ad-

ditive rhythms, that combine to form more repetitive constructs over longer time

periods, such as 5
4

being formed from a group of two and a group of three.

Principle 3 (Tactus Modulation)

A performed tactus has a much slower modulation than the rate of the isochronous

pulse (carrier). This reflects a preference towards constant repetition, with subtle

variation generating longer term grouping.

This contrasts to classical definitions of tactus (such as Lerdahl and Jackendoff’s

GTTM [84]) which have been with respect to notated music. The tactus here is

proposed as a simple pulse (longer in IOI than IOIs encountered in the rhythm, per
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Principle 2) that is perceived by the listener during performance and is capable of

tempo variation (modulation) according to the performance rubato.

That modulation will always extend over more than one period of the pulse. If

the modulation was faster than the pulse this would be proposed to be the effect of

a change of tactus, typically from a meter change. This would also be localised in

time.

Principle 4 (Tactus Tempo Constraints)

A performed tactus has an upper and lower bound on its frequency.

As reviewed in Chapter 2 and itemised in the rhythmic periodic table (Table 2),

the upper and lower bounds on perceivable intervals of time constrain the choice of

tactus rate. The slowest rate can be proposed as an interval of 1800 msec, the fastest

rate as 200 msec, per Section 2.4.2. These values will be modified by contextual

effects, but should serve as typical boundaries. The influence of tempo could be

considered to be a set of bounds on the range of dilation scales during analysis, or

non-linearities in the dilated filter responses.

In using the CWT for rhythm analysis, the maximum wavelet period is the

maximum retainable short term memory. The scale with longest time support is

currently the theoretical limit of a quarter of the time period under analysis. This

can result in a memory for rhythm that extends beyond human lower bounds. It

is possible this may interfere with the ability to segment into groups due to an

explosion of possible rhythmic parsings. It therefore seems necessary to match the

longest wavelet to memory judgement limits from the psychological literature or

experimental data.

Todd has proposed two peak receptive bandwidths in the rhythmic frequency

spectrum corresponding to body sway (5000 msec interval), and foot-tapping (600

msec interval) that would strongly influence the listeners perception of tactus [104].

The foot-tapping rate is centered at favoured tempo rates, while the body sway rate

is controversally derived from the vestibular system physiology [102].

Testing the Principles

These principles lead to a strategy for ridge extraction. It is hypothesised that

the tactus can be found by determining the most complete ridge (apparent at all

analysis times) through searching for maximal ridge continuity (i.e a tactus with

least difference of scale numbers) using elimination of incomplete ridges.



CHAPTER 5. RHYTHM TIME-FREQUENCY INTERPRETATION 124

This version did not apply tempo constraints to determining the tactus. While

this limits the applicability to a wide range of tempos for rhythms, careful choice of

examples which are close to typical tactus rates—Fraisses spontaneous tempo rate

of 600 msec IOI—are assumed to negate effects of tempo preference. Principle 4 is

therefore not scrutinised here.

Principle 1 does not allow for a tactus changing, for example, in the case of a

meter change. It is however easy to imagine a relaxation of this principle with some

perceptually derived tempo limitation to duration of tactus change. This would

enable jumping from one ridge to another when it does not contradict the other

principles and when that change preserves continuity from sample to sample in the

sub-case.

5.4 A Greedy Algorithm for Tactus Extraction

Arguments have been presented in section 5.3 for the tactus being the ridge exhibit-

ing the greatest degree of unbroken continuation across the analysed rhythm. An

algorithm can now be formulated to determine a set of time-frequency points that

lie on the most contiguous ridge across the analysed rhythm at the lowest frequency

scales. This algorithm appears in Table 6. This uses a greedy-choice property [18,

pp. 334] in its design and has similarities to a graphical flood-filling algorithm [39].

The parameter to the algorithm is an array containing the scales (the dilation

indexes a) of all possible ridges (line 1). The initial most likely candidate for the

tactus ridge is the highest scale ridge of the currently lowest frequency scales (s(t)) in

the window (line 7). This solution is then expanded forward and backward from the

time point of the highest scale peakTime (lines 8–15). This expansion extends along

time points of scales lower or equal to the highest scale until there is a discontinuity

(d(n) in line 6). Three cases to be considered at discontinuity points are illustrated

in Figure 50.

The first order difference of the scales are used to determine the continuity of

the candidate. A minimum acceptable variation in scale between consecutive sample

times (∆s) is used as a threshold condition. The ridge tracing algorithm produces

prominent ridges, with ∆s = 2 voices, on examples using 16 voices per octave. This

is close to the theoretical single voice minimum ∆s = 2, and all results reported

here have used this value.
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Medial Case : Highest strata portion surrounded
by lower strata. Reject candidates (n-1,n) and
(n+1,n+2) either side to discontinuity points.

Preceding  Case:  Highest strata portion begins
at first time point lower strata. Reject lower
candidate (n,n+1) to next discontinuity point.

Following Case:  Highest strata portion follows
lower strata, ending on last time point. Reject
lower candidate (n-1,n).

Reject strata portion

Accept strata portion

Yet to be considered

n n+1 n+2n-1

n nn+1 n-1

Figure 50: The three cases to consider within the greedy-choice algorithm (Table 6)
when expanding from the established highest scale (i.e. most likely candidate ridge),
by rejecting lower scale ridges. A set of subcases must also be considered when the
reject portion beginning/ends are also the beginning/end of the analysis window.
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greedy-tactus-extractor:

1: S(T )← array of the scales of all candidate ridges in the time-frequency plane.
2: do
3: s(t)← the lowest S for each time point t ∈ T
4: absFreqChange ← |s′(t)|
5: if max(absFreqChange) > ∆s
6: d← {t : t ∈ T , absFreqChange(t) > ∆s}
7: peakTime ← t, argmin s(t)
8: n← ∃n such that peakTime ≥ d(n) and peakTime < d(n+ 1)
9: if Preceding Case: peakTime ≤ d(1)
10: delete [d(1)→ d(2)] from s

11: else if Following Case: peakTime ≥ d(length(d))
12: delete [d(n− 1)→ d(n)] from s

13: else Medial Case:
14: delete [d(n− 1)→ d(n)] from s
15: delete [d(n)→ d(n+ 1)] from s

16: while max(absFreqChange) > ∆s and length(s) > 1
17: if length(s) > 1
18: complete: Tactus is the lowest scale in s
19: else
20: incomplete: No continuous tactus could be found.

Table 6: The greedy-choice algorithm for extracting the tactus from all candidate
ridges.

5.5 Ridge Tracing Results on Selected Examples

5.5.1 Sinusoidal Signal

To demonstrate the correctness of the ridge tracing methods, a hyperbolically slow-

ing constant amplitude sinusoidal signal

s(t) = cos(2πtωs + α ln(1 + βt))

is analysed in Figure 51 and ridges are plotted in Figure 52. Parameters are set

as α = 100, β = 50, ωs = 40. Spurious ridges are generated by slight magnitude

variations at the edges of the analysis window by all three methods. However, all

three identify the correct ridge without gaps, overlaying each other on the plot.

Ridge tracing methods were also verified to correlate properly with the isochronous

impulse signal shown in Figure 15.
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Figure 51: Scalogram and Phaseograms of a hyperbolically slowing constant ampli-
tude sinusoidal signal.
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Figure 52: Ridges extracted from the signal analysed in Figure 51. The three ridges
derived from stationary phase (Line 1), modulus maxima (scale derivative, Line 2)
and local phase congruency (Line 3) all coincide.
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5.5.2 Anapest with Rubato

The ridge tracing techniques are then demonstrated on an anapest rhythm under-

going an asymmetrical rubato, a ritard to half speed followed by a more rapid

acceleration to the original rate (Figures 53 and 54). The interpretation of the axes

is exactly the same as interpreting the scalogram and phasogram plots in Chapter 4.

The expressive rubato appears clearly as a number of parallel partials reflecting the

tempo curve.

While there is a more continuous ridge generated with modulus maxima, than

with the stationary phase or local phase congruency ridges, there are time points

where the dilation modulus is missing, between samples 5000 and 6000, at approxi-

mately dilation scale number 30, during the rapid acceleration back to the original

beat rate. In order to create a continuous ridge, modulus maxima and local phase

congruency were “or’d” to create the candidate ridges before the tactus extraction

algorithm (Table 6) was run. For this rhythm, the stationary phase method tended

to only produce spurious ridges around the main ridges which tended to defeat the

continuity condition (∆s) in the extraction algorithm.

The ridge extracted as the tactus by the greedy algorithm is shown in Fig-

ure 55. The extracted ridge does not perfectly reconstruct the rapid acceleration

between samples 5000–6000, but does produce a reasonable approximation. It cor-

rectly tracks the variation of the rhythm. The short acceleration from samples

0–500 is due to a spurious local phase congruency ridge which is within ∆s conti-

nuity threshold. The ridge portion which should have been selected appears above.

This ridge would have been selected if the congruency ridge had been rejected. This

could have been achieved with a higher resolution of dilation discretisation, at the

cost of a significant increase in processing burden.

5.5.3 Greensleeves

The ridge tracing approach is demonstrated on a more complex, musical example,

the quantized rhythm of “Greensleeves”. The quantized version was used in order to

assess the accuracy of the ridge tracing which should, in this case, ideally produce an

unvarying ridge across the window. The ridges are displayed in Figure 56, together

with the expected tactus derived from its notation, and a tactus output by the

algorithm described in section 5.4. The expected tactus corresponds to a dotted

crochet interval (see Figure 41) at 60 BPM, 300 samples IOI at a 200Hz sample
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Figure 53: The impulse representation of the anapest rhythm as input to the ridge
extraction algorithm.

0

20

40

60

80

100

120

140

160

0 1000 2000 3000 4000 5000 6000 7000 8000

log
2(

Sc
ale

)

Time

Ridges from Stationary Phase, Modulus Maxima and Local PC of Anapestic rhythm with rubato

line 1
line 2
line 3

Figure 54: Ridges extracted from the anapest rhythm undergoing ritard then ac-
celerate rubato of Figure 53. Line 1 is the stationary phase ridge, Line 2 is the
modulus ridge with respect to dilation, Line 3 is the local phase congruency ridge.
For clarity, the stationary phase ridges are only plotted below scale number 72.
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Figure 55: Tactus extracted from ridge candidates of Figure 54, formed from “or-ing”
the modulus maxima and local phase congruency (Line 1). Line 2 is the extracted
tactus ridge.

rate. This translates to a scale index of 44.

There are several points to note. Stationary phase activates particularly strongly

on the frequency corresponding to the pulse rate,3 but appears in only isolated

patches for all other lower frequency ridges. These lower ridges are more strongly

identified by the modulus maxima plots (Equation 33). Correlation with all three

ridges failed to produce a ridge that could be extracted, due to the spurious ridges

causing the continuity condition to fail to find a continuous ridge. Correlation of

the modulus maxima and local phase congruency ridges produced enough spurious

ridges to cause the tactus algorithm to skip the lowest ridge detected by the modulus

maxima contribution alone. The second lowest continuous ridge selected by these

two ridge methods corresponds to the expected tactus but is achieved “under false

pretences”, as the lowest ridge meeting the tactus principles is achieved with the

modulus maxima alone. Therefore, the ridge extracted was obtained purely from the

modulus maxima as shown in Figure 57. As will be demonstrated in Section 5.6.3,

the tactus extracted is half the expected rate, corresponding to the downbeat. Re-

sults demonstrating the correct rate appear in that section.

3An IOI of 98.7 samples, corresponding to scale index 70 with 16 voices per octave, close to the
quaver at 60 BPM, having an IOI of 100 samples at 200Hz sample rate.
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Figure 56: Ridges extracted from the dynamics accented quantized rhythm of
“Greensleeves” (see Figures 41 and 42). The lines in numbered order are: stationary
phase ridge, modulus maxima ridge, local phase congruency ridge.
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Figure 57: Tactus extracted from the ridge formed by the modulus maxima of the
rhythm of “Greensleeves”. The lines in numbered order are: modulus maxima ridge,
tactus derived from the greedy algorithm in Table 6, tactus expected from notation.
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5.6 Foot-tapping

5.6.1 Sampling the Tactus

Once the tactus has been extracted from the rhythm, it can be used to compute

tap times. Preliminary investigations determined times of each foot-tap by sparse

sampling the tactus [164]. Each foot-tap is computed from the period of the tactus

frequency indicated by the dilation scale at the time of the previous foot-tap:

fi+1 = fi + 2
T (fi)

v (40)

where v is the discretisation of voices per octave, and T is the vector of scale indexes

produced by the tactus algorithm. This foot-tap is only synchronised to the original

rhythm on the first beat, so there is considerable scope for cumulative error. Indeed,

by the Heisenberg inequality, the accuracy of computing time from frequency can

at best be the interval (fi · 2
−1
v , fi · 2

1
v ). This error is dependent on the tactus values

and v; with an IOI of 256 samples, the interval is (245.15, 267.33), or an error of

≈ ±11 samples, or 55.45 milliseconds for a 200Hz sample rate. This is too high

an error and the asynchrony would be perceptible. Clearly a higher discretisation

would reduce the error, at the expense of computation time.

Another problem with this algorithm is the requirement to compute all foot-taps

relative to the first beat. This ignores the function of anacrusis beats, such as in the

Greensleeves example. Unless human listeners have a memory of the rhythm, they

will not begin clapping from the first beat, so a future research task is to identify

appropriate first tap beat. Therefore the beat to begin tapping on (selecting the

phase of the foot-tap) was manually chosen for each rhythm, so that the Greensleeves

example started from the second beat, the other rhythms from the first.

It was initially hypothesised that phase congruency could be used to weight

the intensity of the foot-tap, thereby reflecting the structural location of the beat

with the intensity of the tap. However, as Figure 47 reveals, the original beats will

dominate the phase congruency measures, rather than the congruency representing

low frequency structure, it will simply indicate how close any foot-tap is to the

original beats, not how close that tap lands near a structurally significant time

point. It is a future research task to introduce a usable intensity weighting of each

foot-tap. In addition, research will be needed to create some acceptable match of

“beat importance” to auditory intensity, including the timbre of the foot-tap.
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5.6.2 Reconstruction of the Tactus Amplitude Modulation

The simple foot-tapping algorithm of Equation 40 is problematic when sampling a

tactus undergoing rubato due to the accumulation of error. This problem provoked a

more appropriate approach of reconstructing a tactus in the time-domain and using

it to compute the foot-tap times. From the time-frequency domain of the tactus, a

FM sinusoidal foot-tap signal is reconstructed in the time-domain. Only the tactus

ridge itself contributes to the foot-tap signal. The sinusoidal nature of the signal

enables it as an amplitude envelope, that is, as a rhythm frequency that modulates

over time. This signal was reconstructed from both the scalogram and phaseogram

coefficients.

All scalogram coefficents other than those of the tactus ridge (identified by the

greedy algorithm) were clamped to zero, while the original phase was retained.

This altered magnitude matrix and the original phase matrix were converted back

to complex valued coefficients and used as input to the reconstruction equation,

originally introduced as Equation 9

s(t) =
1

cg
·

1
√
a

∫ ∞
−∞

∫ ∞
−∞

Ws(b, a) · g(
t− b

a
)
dadb

a2
. (41)

The constant cg = 1.7 was determined by calibrating the original time signal with

its reconstruction s(t) to achieve energy conservation. Due to the asymptotic tails

of the Gaussian, the reconstruction cannot be perfect, but it was determined that

the reconstruction would accurately resynthesize the frequency and phase of signals.

While the final version of the new algorithm clamped to a single dilation scale

per sample, an initial version placed a Gaussian envelope across dilation scales at

each time point, centered over the scale of the tactus. In practice, the reconstructed

sinusoids were both the same frequency and phase. They only differed in their mag-

nitude, which did not impact on determining foot-tap positions. The real component

of the reconstruction

As(t) = <[s(t)] (42)

reproduces the sinusoid, while =[s(t)] reproduces its analytic counterpart, i.e. π/2

radians phase shifted. In addition, the phase of the reconstructed sinusoid can be

easily obtained
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φs(t) = arg(=[s(t)],<[s(t)]). (43)

While the peaks of the amplitude modulation (Equation 42) were verified to produce

the correct foot-tap points for an isochronous tactus from the pulse (Figure 15) that

aligned with the original rhythm, problems would arise with rhythms which were

phase shifted from the occurance of an anacrusis. Therefore the φs(t) value was

noted for t at the first beat to begin tapping, and the remaining foot-taps were

selected for each φs(t) that matched that initial phase value. These tap times were

then used to generate a Common Music “thread” of note events [178] indicating

times to synthesise a sampled hi-hat sound4 that could be mixed with the original

rhythm. This enabled the foot-tap accuracy to be audibly assessed.

5.6.3 Examples of Foot-tapping

Foot-tapping can now be assessed with selected rhythms for which the tactus is

already in common agreement among listeners, forming an expected outcome. This

can be potentially misleading, as an expected outcome that is understood and no-

tated as the correct clap rate, and indeed is tapped to, may not be the underlying

tactus—the pulse—the listener initially induces. Instead, a higher harmonic of the

tactus could in fact be used to accompany (tap to) the presented rhythm. For ex-

ample, a listener may sense the pulse falling at downbeats of 4
4

measures and yet tap

at the crochet, the fourth harmonic. Although this would strain the definition of a

tactus, it is important to understand the tap rate as a performed accompaniment

to a rhythm that can itself be “embellished” or “filled in” at harmonic rates. This

variation in choice of tap rate and phase appeared in the experiments on subjects

conducted by Parncutt [130].

Greensleeves Foot-tapping

Using the tactus extracted from the modulus maxima ridge of Greensleeves (Fig-

ures 56 and 57), produced the foot-tap accompaniment displayed in Figure 58. Typi-

cally the downbeat interval differed from the ideal by between 1 and 51 samples, with

most under 12 samples. These errors resulted from the undulation of the extracted

tactus ridge, but were not cumulative.

4The hi-hat cymbals on a drumkit typically have a time-keeping function in popular music, so
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Figure 58: Foot-tap of Greensleeves from the modulus maxima derived ridge. Line
1 is the original rhythm, line 2 is foot-tap points computed from the tactus, line 3
is foot-tap points computed from the expected tactus, assuming it corresponds with
the notated meter. The amplitude of the last two signals are arbitarily scaled for
clarity, line 1 shows the amplitude of the original signal.

The Greensleeves tactus selected by the tactus algorithm using the modulus max-

ima ridge alone was half the expected tap rate. It is instructive to display the results

when using both the modulus maxima and local phase congruency, which resulted in

a tactus being extracted which is extremely close to the expected result (Figure 59).

The phase of the tactus and the derived foot-taps appear in Figures 60 and 61,

with the close match (maximum error +34/-5 samples) between the theoretical and

computed foot-tap position both visually and audibly apparent.

Foot-tapping During Rubato

The extraction of ridges and tactus from the anapestic rhythm undergoing rubato

was demonstrated in Figures 54 and 55. The foot-tapping beats are plotted overlay-

ing the original rhythm in Figure 62 and 63. This example demonstrates the use of

an extracted modulating tactus to foot-tap to a rhythm undergoing significant asym-

metrical rubato. Regions of constant tempo, deceleration and faster acceleration are

all correctly tapped on the first beat.

The artifactual acceleration of the ridge at the start of the rhythm (noted in

it was deemed an appropriate timbre to use to qualitatively assess the foot-tapping.
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Figure 59: Alternative tactus of Greensleeves. The lines in numbered order are:
ridge correlated from modulus maxima and local phase congruency, tactus derived
from the greedy algorithm in Table 6, and tactus expected from notation.
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Figure 60: Alternative Foot-tap (line 2) of Greensleeves (line 1) derived from tac-
tus phase (line 4), together with the expected foot-tap from the notation (line 3).
Intensities of the original rhythm and the foot-taps have been scaled from 0–3 to
clarify their relationships to the phase (−π to π).
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Figure 61: Alternative Foot-tap (line 2) of Greensleeves (line 1) derived from tactus
phase, with the expected foot-tap from the notation (line 3).

Section 5.5.2) perturbs the phase used to compute foot-tap times, so the foot-tap

algorithm of Section 5.6.2 was forced to begin tapping from the second anapest or

third anapest group (the fourth or seventh beats respectively). If the tapping began

on the first beat, the phase changed at a slower rate and the initial phase value would

skew all subsequent beats. An improved tactus extraction algorithm extracting the

correct initial rate would avoid this problem. If the tapping began on the fourth

beat, which is still within the erroneous tactus acceleration region, the perturbed

phase produces a maximum error of 20 samples (100 msec) from the ideal tap point.

This gives the impression of a dragging feel, rather than a lack of rhythm. The failure

is a relatively “graceful” degradation in performance. Starting the tapping from the

seventh beat reduces this lag to nearly zero. An audible example of the foot-tap

mixed with the original rhythm reveals an occasional slight asynchrony between the

foot-tap and the first beat of each anapest group. While the initial tactus phase

datum is identified from the seventh beat, the fourth beat is still identified as an

appropriate time to foot-tap, though 100 msec early due to it’s skewed phase.

In both cases, the foot-tapping algorithm does remarkably well on a rhythm

that changes speed so rapidly. It should be noted that it can be quite challenging

for a human listener to accurately tap to such a rubato rhythm. The deceleration

will typically lead to human errors in judging the time of the next beat. While
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Figure 62: Foot-tap of the anapestic rhythm undergoing asymmetrical rubato. The
first line is the original rhythm, the second the foot-tap accompaniment. Foot-
tapping was determined from the phase of the seventh beat.

accurate in always clapping to the first beat of each anapest grouping, selection

of the first beat ignores the effect of tempo on interval accents. Indeed, for this

anapestic rhythm, listeners will typically accent the first beat at fast tempi and the

last of the three at slow tempi. However this appears rather context sensitive. The

tempo rates at which such accentual inclinations would induce listeners to continue

to tap (at a syncopation) on the first beat, and when to switch to the third must be

systematically investigated for human listeners, before a computational approach is

proposed.

Investigation of an Example of Mismatch to Expected Tactus

Desain and Honing’s quantized web rhythm (analysed in Figure 37) demonstrates

the failure of the algorithm to match the expected tactus. This provides insights

into the limitations of the greedy algorithm and the foot-tap generator. The ridges,

tactus and foot-tap appear in Figures 64,65 and 66 respectively.

A ridge extracted from modulus maxima “or’d” with stationary phase enabled a

tactus to be extracted. This tactus is of a lower frequency than the expected tactus

from the notation (corresponding to a crochet at 100 BPM with an interval of 120

samples). As Figure 66 shows, the extracted tactus corresponds to an initial interval
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Figure 63: Phase of the foot-tap of the anapestic rhythm undergoing asymmetrical
rubato. The first line is the original rhythm, the second and third the foot-tap
accompaniment, the fourth the foot-tap phase.
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Figure 64: Ridges of Desain and Honing’s rhythm analysed in Figure 37. The lines
in numbered order are: stationary phase ridge, modulus maxima ridge, and local
phase congruency ridge.
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Figure 65: Tactus of Desain and Honing’s rhythm extracted from the ridge formed
by the modulus maxima or’d with stationary phase. The lines in numbered order
are: combined modulus maxima and stationary phase ridge, tactus derived from the
greedy algorithm in Table 6, and tactus expected from notation.
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Figure 66: Foot-tap (line 2) of Desain and Honing’s rhythm (line 1) derived from
tactus phase, with the expected foot-tap from the notation (line 3).
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of a minim tied with a quaver (2.5 crochets) which then descends in frequency to

a dotted minim (3 crochets) for the remainder of the rhythm. As is apparent from

Figure 65, the first interval is spurious and an artifact of the tactus extraction algo-

rithm. However, if the tap times are used to synthesize audible beats accompanying

the original rhythm, the claps create a syncopation, but still definitely create the

impression of an unlikely but plausible accompaniment to the original rhythm.

As Figure 65 indicates, the expected tactus ridge is not continuous across the

analysis time. The tactus pulse does not receive enough energy during the period

of samples 900–1200 to retain its ridge. Re-examining the scalogram of Figure 37

reveals this is an artifact of the ridge extraction methods, as there is visually an

energy at that period. However the energy does not always form a magnitude peak

and therefore a ridge everywhere, as it is disipated by nearby ridges. In addition, this

ridge does not correspond to the highest modulus peak. Therefore it would appear

neccessary to introduce a tempo weight to scale this ridge to prominance. It can be

concluded that the notion of a peak, producing a ridge, is too narrow a definition

for faultless interpretation, but that within limited contexts, it can function well for

interpretation purposes.

Fabricating the expected tactus and using it to compute the foot-tap using the

phase indicates how successfully an isochronous pulse can be synthesised. As de-

scribed in Section 5.6.2, this is achieved by constraining the magnitude to the single

voice corresponding to the expected foot-tap rate, yet retaining the original phase.

Figure 67 plots the match between the expected foot-tap resynthesised from the

single voice and the known expected foot-tap interval. The deviation of beats 9 and

17 reveals that the original phase seems to skew the pulse from the ideal, but this

is slight (maximum of +6/-4 samples error). While it is possible to synthesize the

phase in the simplest case of an isochronous tactus, the general case of a modulated

tactus seems difficult to correctly predict. More importantly it seems theoretically

incorrect to ignore the signal’s original phase when the intention is to resynthesize

a particular partial of the rhythmic signal.
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Figure 67: Foot-tap (line 2) computed from the expected tactus of Desain and
Honing’s rhythm (line 1). Line 3 is the expected foot-tap using the expected tap
IOI.

5.7 Assessment of Results

5.7.1 Ridge Generation and Correlation

No single method of correlation of different ridge forms was found to reliably achieve

a robust single ridge (Section 5.2.5). In fact the inclusive correlation (or’d ridges)

could have the opposite effect, creating several ridges near the modulus maxima

ridge which could result in valid ridge portions being rejected due to their proxim-

ity within ∆s. This was illustrated in the Greensleeves tactus identification which

skipped the lowest ridge when both local phase congruency and modulus maxima

were correlated. The extra ridges also increase the running time of the tactus ex-

traction algorithm, increasing the number of ridges to reject as well as the time

spent calculating the stationary phase and local phase congruency ridges.

As mentioned in Section 5.2.5, the modulus maxima alone was often unable to

provide a valid ridge which held to the continuity hypothesis in the case of rapid

frequency variation such as the acceleration of the anapestic rhythm analysed in

Section 5.5. The stationary phase algorithm detects ridges effectively on signals

where the oscillation of the signal is clear, as with the hyperbolic example and an

isochronous pulse. It has been much less successful with rhythmic signals, where
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the stationary phase was only partially helpful in combination with the modulus

maxima. Likewise, the local phase congruency was particularly effective in recover-

ing rapid accelerations, but could also introduce spurious ridges which made it only

effective in combination with the modulus maxima.

It seems undesirable to propose a heuristic as to what correlation mechanism

should be used for each rhythm. It seems more fruitful to devise a tactus algorithm

which does not rely on a single correlated set of ridges, but instead weights the

contribution of each ridge approach during the tactus determination.

5.7.2 Asymptoticism and Undulating Ridges

All ridge extraction methods tended to produce slight variations in the ridges, de-

spite in some cases the original signal being quantized to integer ratio IOIs. This

undulation appears to be due to the discretised number of voices per octave in the

case of modulus maxima (with respect to scale) and local phase congruency. Com-

putational burden prevents increasing the resolution above that used here (16 voices

per octave), but would result in less variation and therefore less inaccuracy when

foot-tapping.

However, examining scalograms of Greensleeves (Figure 42) suggests that the

ridges also undulate due to the interactions between ridges. This seems most likely

from the contradiction of the asymptotic condition on the signal (Equation 26

described in section 5.2.1) composed of sparse infinitely fast impulses (see sec-

tion 5.2.2). The infinitely fast amplitude “envelope” of the impulse contradicts

the requirement that the phase of the signal changes faster than its amplitude. In

the case of simpler signals such as the isochronous pulse (Figure 15), the ridge is

perfectly straight.

While it seems that this contradiction compromises the analysis capabilities of

the CWT, demonstrably there is still considerable information made apparent by

the approach. The effect of these undulations is to produce unnecessary variations

in the tactus and therefore the tap points. There are two possible solutions to this,

to use a low pass filter to smooth the tactus before using it to compute foot-tap

times, or to devise a tactus algorithm which does not operate only on the ridges,

but on the entire scalogram, local phase congruency, and stationary phase fields,

such that broader regions of data are assessed. The latter approach holds promise

to compensate for interaction between ridges.
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5.7.3 The Tactus Algorithm

Although it is important to emphasise that the tactus algorithm is simply identifying

one of the ridges as prominent, it clearly is not biologically plausible. As a first means

to extract out a modulating ridge that was visually apparent on the scalogram to

allow testing that ridges are applicable to the resynthesis of foot-tapping, it has

served its purpose.

The tactus algorithm is limited in a number of ways. It is susceptible to gaps in

the ridges, and is therefore reliant on the ridge extraction and correlation approaches

finding a continuous ridge across the window. It is sensitive to ∆s (see Table 6). It

can reject valid ridges if ∆s is set too high to not detect a discontinuity properly.

There is no accounting for likelihood weight of the ridge, all ridges are assumed

equal. This is clearly too simple. However, resolving the relative contributions of

ridge weightings becomes more complex when correlating between multiple ridge

methods. The algorithm’s lack of tempo sensitivity limits its use to rhythms that

fall within narrow ranges of intervals. This clearly needs to be addressed in the

future.

Statistical models, and (with less successful outcomes), neural or evolutionary

approaches that do not rely on rules, have shown promise in overcoming contex-

tual limitations. Such a limitation seems to occur with the continuity condition on

the ridge extraction algorithm. The use of curve fitting statistical methods seems

a fruitful avenue to pursue. Such a method must allow for distinguishing between

close parallel curves, identifying several simultaneous candidates or weighting con-

tributions from the ridges to identify the most likely candidate curve. Clearly with

such an approach there is scope for biological weightings, such as absolute tempo

constraints, to be incorporated.

In practical terms, and for the results reported here, better ridge extraction would

be only an incremental improvement. The main tenant of the hypothesis—that time-

frequency approaches to analysis of rhythm can be used to provide interpretable

information for accompaniment tasks—has been satisfied. While a “cleaner” tactus

would be required for applications such as event editing respecting rubato, the foot-

tapping task is only sampling the tactus at isolated points, so the results for this

task can be expected to only marginally improve. It remains to be investigated

whether simply low pass filtering the currently extracted tactus will compare to a

curve fitting approach.
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5.7.4 Foot-tapping

The tactus phase based foot-tapping algorithm has proven effective in computing

tap times of an accuracy that is acceptable in listening tests. The most apparent

limitation is the requirement to manually determine when to start tapping. A future

task is to investigate if it is possible to compute some measure of confidance of

rhythm ambiguity from ridge acceleration behaviour. When the confidance rises

above a threshold, foot-tapping can commence.

As indicated in Section 5.7.3, the accuracy of the foot-tapping is dependent on

the tactus extracted. It was neccessary to closely monitor the tactus so extracted to

determine that the foot-tapper was indeed accurate. As verified by using a fabricated

(albeit constant rate) tactus, where the extracted tactus is incorrect, its fabricated

substitute produced good tapping results.

Foot-taps are currently of fixed intensity and currently there is no determination

of accentuation, in particular from tempo sensitivity. This is a future research task.

5.8 Summary

The multiple hypothesis aspects of rhythm perception are made explicit with wavelet

analysed rhythms. The use of ridges derived from modulus maxima, stationary

phase and local phase congruency have been demonstrated to successfully extract

the tactus of sparse impulse rhythm signals. These different ridges are independent

interpretation mechanisms acting on the modulus and phase representations of the

time-frequency plane. These can be considered as perspectives of the time-frequency

representation of the signal. These have been the focus of research to understand

their use in rhythm interpretation applications due to such mechanisms being unique

to the nature of multiresolution analytic (phase-preserving) wavelets.

The correlation between these methods as a means to produce well recovered

ridges is new. Modulus ridges have been previously used by Todd [103], in the

application of a biologically influenced, real-valued wavelet to rhythm perception.

Whereas the research reported here are the first examples of ridges obtained using

analytical wavelets. This approach enables magnitude ridges to be quantified and

used in synthesis of accompanying rhythms. This is the first use of stationary phase

to compute ridges from impulse characterised signals, in particular, rhythmic signals.

The new concept of local phase congruency has been proposed and demonstrated as
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a means to identify harmonics within an analysed signal.

With the construction of robust ridges, an algorithm for the extraction of one of

several candidates as the tactus ridge has been documented. This is deliberately sim-

ple and does not seek to model rhythm by using currently reported biological features

thought to contribute towards rhythm perception. Rather it adopts a behavioural

model distilled into general principles, investigating the information inherent in the

signal. The intention has been to determine clearly the information available and

its use, and to quantify the limitations of such an approach. In particular, there is

no explicit perceptual model proposed to distinguish interpretation of time spans

within the subjective present (Section 2.1.2), compared to time spans longer than

the subjective present. Again, this has been delayed to characterise exactly the de-

gree to which an explicit model is necessary. In the future, a biologically motivated

model can be constructed in the time-frequency domain, with a clear reference to

information which any such multiresolution model must encounter. Several criteria

for an improved tactus algorithm have been proposed for future investigation.

The accuracy of the tactus so extracted has been tested by applying this to

the production task of foot-tapping to the rhythm. The results demonstrate that

the tactus (when correctly extracted) can be successfully used to synthesize accurate

foot-tap beats that respect structured tempo variation in the analysed rhythm. This

also demonstrates the power of the CWT reconstructive capabilities in analysis-by-

synthesis applications. This is the first application of reconstructive multiresolution

approaches to musical rhythm, and the first demonstrations of the feasibility of the

approach. The theoretical framework of wavelet transforms has enabled the problem

of foot-tapping to be quantitatively cast in clear terms of selective attention to

rhythmic strata.



Chapter 6

Conclusions and Future Directions

6.1 Concluding Assessments

In this thesis, phase preserving Gabor wavelets have been proposed, implemented

and tested as a means of analysing musical rhythm. The transform represents the

rhythmic effects generated by dynamic and temporal accents in establishing hier-

archies of rhythmic frequencies. This hierarchical representation conforms closely

with existing music theories of the inducement of temporal structure, meter and

expressive timing. The notion of multiple hypothesis during rhythm perception is

made explicit with the time-frequency representation of rhythmic signals. This ap-

proach has allowed a rhythmic frequency to be determined that can be considered

the foot-tapping rate. This modulating frequency has been used to resynthesize

accompaniment rhythms that respect the tempo behaviour of the original rhythms.

This task has provided a complete perspective on interpretation of a performance:

from conception, to production, to listening, to accompaniment.

6.1.1 Frequency Analysis

This research has explored the idea of viewing a canonical pulse as an underlying

sinusoidal oscillation at a frequency given by a wavelength equal to the inter-onset-

interval. This is an approach that unifies many aspects of rhythm into a single

conception.

As has been shown, a large amount of information can be obtained from the

rhythm signal, independent of modelling perceptual processes. This has enabled

147
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investigation of the value of the multiple resolution approach without inherent as-

sumptions of processing mechanisms used in the cognition of rhythm. Indeed, many

of the features of rhythm; the use of accentuation and time intervals, retrospec-

tive evaluation, and forward time projection of expectancy are all managed by the

decomposition onto non-causal basis functions. Potentially, a model of tempo pref-

erences and absolute performance limits could be constructed in the time-frequency

domain, in terms of selective band-pass filters.

Of course, any model of music cognition will be limited by the degree to which it

represents psychological behaviour. In that sense, the value of a theoretical model of

time-frequency representation for rhythm perception modelling is currently limited

despite the benefits of such an approach detailed in Section 3.3.2. Clearly a final

version of a rhythm perception model must incorporate a model of human temporal

constraints noted in section 2.4.2.

The multiresolution approach has shown good representation of expressive tim-

ing. Acceleration and ritards are made apparent, providing appropriate visualisation

of rubato. It is possible to track tempo changes by following the apparent strata.

This is a reproducible analysis that can be interpreted both manually and com-

putationally. This has not required a specific model of the behaviour, it simply

appears as part of the decomposition function of the wavelet representation. The

formal concept of expressive timing as a frequency modulation of underlying canon-

ical pulse hierarchies has intuitive and descriptive benefits. For example, phrase

final lengthening seems to be the rhythmic equivalent of octave-stretching, that is,

slight departures away from integral ratios. In the context of a total phrase there

will not be a canonical meter, but instead a warping function that will deviate the

beat frequency in a characteristic fashion, thereby communicating the information

inherent in the expression. The use of time-frequency representations makes this

activity apparent.

There are similarities between this multiresolution wavelet analysis of rhythm

and Desain and Honings decomposable theory of rhythm projecting expectancy

measures [23]. Both project a form of localised function over time. Their localised

function is forward and backward projected in time, however the wavelet approach

translates the localised function every sample, while Desain and Honings approach

projects at intervals corresponding to harmonic ratios. For both models there is

the opportunity to assess the value of the time-point based on convergence of time

scales. The wavelet approach generalises this applied cognitive musicological theory
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by unifying it with signal processing research. This has borne fruit in terms of

performance (use of the FFT to perform the convolutions of the signal with the

scaled and translated wavelet), verification through applications in other domains

(examining sound signals), and generality (use of phase, phase congruency and ridge

extraction).

6.1.2 Multiple Resolution and Ridges

In it simplest form, multiresolution analysis is akin to dividing down the most preva-

lent IOI’s in the rhythm. This could be achieved by assessing the rhythm at time

spans which are powers of 2 and 3 (duple and triple time) of the prevalent IOI’s.

However multiresolution analysis also captures many aspects of rhythm interpreta-

tion, in particular, modulation of pulse rates, in a coherent manner. While there

are many demonstrated advantages to the multiresolution approach, a future task is

to compare the results directly against such a divide-down approach to assess if the

extra computation time of the wavelet approach is justified. It should be noted that

no particular effort has been expended in optimisation, so there may be performance

gains to be made.

In quite an opposite manner to the approach adopted by Tanguiane, the multires-

olution analysis of rhythm does not reduce or compress data in order to determine

encoding or least complexity [177]. Rather it creates an expanded (and invertable)

representation that reveals structure that would otherwise be hidden. Widmer de-

scribes such a process as a more abstract representation [188, pp. 96]. As shown

in Chapter 5, the redundancy of the decomposition has proved to be essential to

achieve the extraction of the tactus.

Despite the demonstrated value of the approach, the use of ridges to determine

the tactus seems flawed. While concepts like modulus maxima, local phase congru-

ency and stationary phase are worthwhile, the binary selection of ridge/not-ridge

can be seen to be throwing away quite a large amount of information before the

tactus algorithm begins. This is counter to human visual interpretation of the sca-

leogram and phaseogram, in that the importance of each coefficient (by grey-scale

value) is assessed as a unified body of data. Instead of isolating to single ridges,

correlating then extracting, a future research endeavour suggested in Chapter 5 is

to combine the entire continuously valued magnitude, local phase congruency and

stationary phase fields and use a statistical curve fitting approach over the combined
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fields for tactus determination.

6.1.3 Reconstruction

Achieving reconstruction as described in Section 5.6.2 provides a complete perspec-

tive on a performance from a performer’s conception to another’s accompaniment.

Using a reconstructive transform (with at least a measure of error in reconstruction

if not using orthonormal transforms) allows an analysis-by-synthesis approach, and

the ability to systematically verify the results through resynthesis. In this thesis, the

resynthesis has been used to address the foot-tapping problem [31]. The ability to

measure the performance of the algorithms has produced highly encouraging results.

The reconstruction capabilities promotes the concept that time-frequency rhythm

analysis is merely the translation to a new domain of time-frequency, without loss of

information, so that it is equally valid to evaluate the rhythm in this domain as the

time domain. When selectively reconstructing from certain coefficients in the time-

frequency domain the resulting time domain signal has predictable results which

are readily interpretable. This applies to non-orthogonal wavelets such as the ones

used here rather than orthogonal wavelets which do not have an intuitive impulse

response. Such an approach also enables modelling of perceptual constraints as a

rhythm-band time varying filter in the time-frequency domain.

The reconstruction then allows the resulting analysis to be seen as purely a

descriptive representation of the rhythm. This time-frequency representation is

therefore declarative, in that the transformation is transparent, energy preserving

and intuitive, and analysis is possible on the new representation. These match

several of the attributes which are argued by Honing [61] to be important for research

in musical time.

6.1.4 How Harmful is an Extracted Tactus?

There are important differences between the current notion of tempo curves (see

Section 2.2.7) and the extracted tactus ridges investigated here. The extracted

tactus is derived from a context of overlapping beat intervals, rather than computing

deviations at each beat time from some supposed canonical tactus, original score or

structural annotation. This latter approach of tempo curves does not allow for an

accurate instantaneous frequency to be determined to compute new beat rates.
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Desain and Honing emphatically proposed the link of structure to expressive

timing. Indeed the approach of determining the modulation of the tactus from the

original rhythm reflects this link. The extracted tactus is truely a low frequency

component of the original signal, identified from the time-frequency domain (i.e the

structure) of the rhythm.

When the time-domain tactus is resynthesised from the clamped magnitude and

original phase of the signal (Section 5.6.2), the relationship to the original rhythm is

preserved in the phase, and the time extents of the magnitude and phase (matching

the time extent of the analysed rhythm). It is a future task to see if such tactus

elements could be transferred and applied to other rhythms.

Desain and Honing have argued that the ability to transfer a tempo curve is

a test of their claimed independence [28, 26, 27]. At first sight, transferring ex-

tracted tactus and phase does not seem achievable, as each rhythm will have its

own length and characteristic scalogram and phasogram. A possible strategy may

be a form of interpolation to match an extracted tactus to a new rhythm’s time

extent—stretching the tactus to fit, using the original phase. Even in the light of

this proposal, the concerns of Desain and Honing remain, and it appears that the

extracted tactus is intrinsically dependent on the original rhythm that produced it.

6.2 Contributions

The contributions made in this thesis can be summarised as follows:

1. Proposed a representation scheme for musical rhythm for time-frequency signal

processing approaches.

2. Determined the theoretical applicability of analytical wavelets to analysing

musical rhythm for the first time.

3. Applied the 2-D image processing phase congruency measure to 1-D rhythmic

analysis for the first time, and evaluated the information provided by phase

congruency.

4. Verified the suitability of analysing musical rhythm using analytical wavelets.

This was done by devising and coding a rhythmic database and testing the

wavelet analysis on this database. This has shown that there are considerable

advantages in representing rhythm in a time-frequency domain.
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5. Applied two existing ridge extraction methods of modulus maxima and sta-

tionary phase to rhythmic signals for the first time and evaluated the resulting

extractions.

6. Devised a new ridge extraction method of local phase congruency and investi-

gated the worth of correlation of all three ridge methods. Several alternative

methods for correlation were also investigated.

7. Devised and implemented a tactus identification algorithm operating in the

time-frequency domain. This is the first time such an algorithm operating

in the time-frequency domain has been proposed. The performance of this

algorithm was evaluated and further paths of development were suggested to

improve its performance.

8. Implemented a foot-tapping system by reconstructing a new rhythm from the

extracted tactus. This is the first such approach to foot-tapping, or any other

form of structure interpretation, to demonstrate results from reconstruction.

The results are extremely encouraging and are an improvement on existing

approaches, especially on rhythms with expressive timing.

6.3 Practical Applications and Future Directions

for Research

A powerful model of rhythm has a number of computer music applications—transcription,

scorefile editing and computer accompaniment, such as score following or interactive

performance systems [149, 160]. These applications suggest directions for further

development of multiresolution rhythm analysis.

6.3.1 Structure Preserving Quantization

A significant problem in transcription (conversion of performance into visual nota-

tion) is the correct deduction of the rhythm back to its canonical conception before

performance. The tactus determination method described here appears to be a

powerful tool to identify the expressive timing and the canonical rhythm being per-

formed. With the tactus determined, each beat’s canonical duration is computable

using the duration of the tactus rate current at the time of each beat.
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Allied to the transcription task is the task of quantization—correcting for non-

intentional performance errors when recording a musician, typically from MIDI in-

put. Traditional approaches have attempted to align to a metrical grid, while a more

powerful context sensitive connectionist approach has been demonstrated by Desain

and Honing [25]. In both methods there is no distinguishing between an intentional

rubato, in particular quantizing over a ritard, where no beat would have a small

ratio IOI relative to its neighbours, and non-intentional performance error.

Non-intentionality of expressive deviations can now be viewed as producing

overly complex modulation of the tactus. A low pass filtering of the frequency

modulation function, before reconstruction to the foot-tap, is proposed here as a

means of quantization while preserving intended expressive timing. Specification

of the actual filters are a future research task. In particular, there remains the

question of whether low-pass filtering localised deviations such as agogic accents,

which produce short term modulations of the tactus (Section 4.2.3) will destroy this

information.

As Western rhythm theory defines rhythmic units into small integer subdivisions

of a slowest interval, those subdivisions can be considered harmonics of the rhythmic

fundamental. If harmonic rhythms are what is currently considered a quantized

rhythm, assessing the harmonicity of the ridges to the tactus can produce a measure

of expression in a performance. If it proves possible to accurately factor a rhythm

into harmonic and inharmonic components, where harmonicity is with respect to

a predominant tactus, it may be possible to remove inharmonic components that

comprise gross timing errors.

6.3.2 Structure Models

While the tactus is important, there is still much work to be done in inducing

other concepts of rhythmic structure. The scalogram, phasogram and their ridges

form a representation of underlying structure of a rhythm. As demonstrated in

Chapter 4, grouping appears as a combination of parallel, harmonic ridges. It is

possible an identification and labelling of several ridges could form a preprocessing

step to determine musical structure. Such a structure representation allows editing

of the times of recorded events while respecting their tempo. For such a task,

the note’s nominal value should determine where, on the ridge, the tempo should

be retrieved. Changing note values (crochet to quaver etc) would effectively be
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selecting different ridges.

The multiresolution technique is appropriate to apply to the analysis of final

ritards (Section 2.2.7). This simply requires the production of suitable data from

performance reduced to monophonic lines. While much literature exists reporting

analysis of final ritards, the data is yet to be made available. Inclusion of such data

into DORYS seems very worthwhile.

Other forms of time-keeping extraction appear possible. For polyrhythmic African

music, it may be possible to extract the bell-line, by relaxing the continuity con-

dition and instead looking for characteristic short term ridges (which should be

discontinous due to the bell-line’s asymmetry and not forming an additive meter).

Given the cultural requirement to understand the bell as the time-keeping instru-

ment, a possible scenario is to produce an analysis of the bell-line rhythm, then

attempt to analyse the accompanying polyrhythms performed on other instruments

by matching against the ridge behaviour of the bell.

6.3.3 Parallel Stream Segregation

The wavelet analyses have been over a single voice, drum or ensemble instrument,

where timbre, pitch and spatialisation are conveniently assumed to provide an inter-

related discriminator in the mind of the listener between instruments. Clearly the

work of stream segregation (for example Brown and Cooke [11]), and specifically

multiresolution approaches by McDonald [111], Schreirer [154] and Tait [175] needs

to be tested as a preprocessor to multiresolution rhythm analysis. It is possible a full

model would provide top down feedback from rhythmic structure to aid in stream

segregation.

Assuming adequate stream segregation, further work needs to be done relat-

ing between multiresolution analysis of streams, as visualised in Figure 21. A 2-D

wavelet transform typically used for vision seems initially appropriate to relate tem-

poral coincidence between polyphonic events (“vertical timing”, to use Desain and

Honing’s term [28]). This would allow dealing with temporal asynchrony between

notes of a chord, voices in a choir, percussion instruments and so forth. However

the dimension of polyphonic depth does not seem to have the relationship to the

original signal that 2-D wavelets have when applied to the original image signal.

This issue warrants considerable research.
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6.3.4 Real-Time Operation

To achieve real-time accompaniment with the continuous wavelet model requires

addressing the non-causality of the Morlet wavelet and the enculturated database of

rhythmic examples (veridical expectancies) listeners use. It also requires a real-time

unambiguous determination of the tactus.

The current Morlet transform is unable to run in real time due to the use of the

convolution operator, which operates over the entire analysis window. Holschneider

and others “algorithme á trous” implementation of the Morlet wavelet [58] as cas-

caded filter banks enables real-time operation. Obviously a period of time must pass

before the lowest scales can be analysed, but this is a natural constraint on human

listeners too. This requires establishing a lowest scale, that is, a maximum time

interval that analysis will extend to. A first approximation seems to be a period of

2–5 seconds, conforming with the limits of the subjective present.

An assessment of the need for an enculturation database needs to be made, and

what form it should take. This could take the form of changing the wavelet domain

responses, or modifying the response following analysis.

The next issue is to develop a different approach to determining the tactus.

This requires modelling of the constraints and behaviour of human perception and

performance. It is likely there would need to be a limit to the memory of the tactus.

Likewise, a measure of inertia to change from the current pulse rate would be needed

(in a similar manner to the current continuity condition of the tactus algorithm).

The weighted influence of absolute tempo constraints (frequencies) should be used.

It may be possible to build from examples of performed rhythms to discover what

transformations are possible.

6.3.5 Other Wavelets

As detailed in Chapter 3, Morlet wavelets have the best simultaneous time and fre-

quency resolution with respect to the Heisenberg inequality. It would be instructive,

however, to investigate the use of other wavelets for analytical purposes.

One candidate is Todd’s one-dimensional version of Marr’s Sombrero wavelet

[103, 95]. However as noted in Chapters 3 and 5, the lack of an independent phase

measure and reconstructive capabilities would limit the application of that wavelet.

Todd’s wavelet has similar characteristics to Solbach’s Gammatone wavelet [168]

which has a characterisation of the degree to which it deviates from the Gaussian
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envelope, and has an independent phase.

Interval accents as demonstrated by Todd [103, 110] can be seen to be an artifact

of the tail of the Marr wavelet, as such, accent effects on the last beat of an anapest

group are not present with the non-causal Morlet wavelet. However, it is unclear

whether this effect is tempo dependent in Todd’s model. Tempo constraints are yet

to be introduced in the multiresolution rhythm model as described in Sections 5.6.3

and 6.3.4.

Some design criteria of a constructed wavelet in order to be more applicable to

rhythm analysis would be to minimise interaction between ridges and to quantify,

and better control, the secondary and ternary oscillations of the wavelet. While

the second criteria is trivial to achieve by changing the Gaussian envelope, reducing

ridge interaction further seems a more challenging task.

As noted in Sections 5.6.2, 3.3.1 and 6.1.3, the reconstruction of Morlet wavelets

is not perfect. While imperfect reconstruction has not hindered tactus determina-

tion, experimentation with bi-orthogonal wavelet transformations may be rewarding.

These wavelets are capable of preserving phase, while reducing the representation

redundancy and allow perfect reconstruction [185].
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Colophon

Preparation

This thesis was prepared on the teTeX distribution of LATEX2e substituted with Basil

K. Malyshev’s BaKoMa and Adobe Sonata, Calliope and ZapfDingbat Postscript

fonts, running NeXT/Apple’s OpenStep V4.2 on a Pentium 166MHz clone. The

DVI file was converted with dvi2ps and then to PDF with Frank Siegert’s PStill.

The diagrams were generated with Diagram! V2.0 and Mathematica routines, and

music notation with William Clocksin’s Calliope. I couldn’t resist itemize lists with

Dingbat symbols.

The Sound File examples

This thesis is presented in both printed and softcopy forms, the latter as an Adobe

Acrobat PDF file. This includes links to audio examples of the rhythms encoded in

AIFF [1] format. These were generated with Rick Taube’s Common Music system,

substituting an enveloped sinusoid instrument for each impulse, and using 44.1KHz

sample rate. The timing and intensities are identical to the analysed examples.

Clicking on the link will play the example file.

Sources

Online versions of this thesis and software are available from:

a http://www.cs.uwa.edu.au/~leigh/Research/Thesis.tar.gz

a http://www.cs.uwa.edu.au/~leigh/Research/Software/DORYS.tar.gz

The “Database Of RYthmic Stimuli” written in Common Music, described

in Section 4.1.
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a http://www.cs.uwa.edu.au/~leigh/Research/Software/MultiresRhythm.tar.gz

The software performing analysis and plotting of musical rhythms and pro-

ducing Common Music score files of foot-tapping rhythms described in Chap-

ters 4–5.


