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ABSTRACT

Computational models of beat tracking of musical au-
dio have been well explored, however, such systems often
make “octave errors”, identifying the beat period at dou-
ble or half the beat rate than that actually recorded in the
music. A method is described to detect if octave errors
have occurred in beat tracking. Following an initial beat
tracking estimation, a feature vector of metrical profile sep-
arated by spectral subbands is computed. A measure of
subbeat quaver (1/8th note) alternation is used to compare
half time and double time measures against the initial beat
track estimation and indicate a likely octave error. This er-
ror estimate can then be used to re-estimate the beat rate.
The performance of the approach is evaluated against the
RWC database, showing successful identification of octave
errors for an existing beat tracker. Using the octave error
detector together with the existing beat tracking model im-
proved beat tracking by reducing octave errors to 43% of
the previous error rate.

1. STRUCTURAL LEVELS IN BEAT
PERCEPTION

The psychological and computational representation of lis-
teners experience of musical time is of great application to
music information retrieval. Correctly identifying the beat
rate (factus) facilitates further understanding of the impor-
tance of other elements in musical signals, such as the rel-
ative importance of tonal features.

Considerable research has proposed theories of an hi-
erarchical structuring of musical time [12-14, 18, 20, 27],
with the favouring of particular temporal levels. The tac-
tus has been shown to be influenced by temporal prefer-
ence levels [10], proposed as a resonance or inertia to vari-
ation [25]. At the metrical level ', [21] argue that pre-
established mental frameworks (“schemas’’) for musical me-
ter are used during listening. They found a significant dif-
ference in performance between musicians and non-music-
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ians, arguing that musicians hold more resilient represen-
tations of meter, which favours hierarchical subdivision of
the measure, than the non-musicians.

The fastest pulse has been used in ethnomusicology [16,
24] or reciprocally, the tatum in cognitive musicology [1]
as a descriptive mechanism for characterising rhythmic struc-
ture. While it is not assumed to be a model of perception
used by listeners and performers [16], the tatum is used to
form a rhythmic grid of equally spaced intervals. It there-
fore represents the limit of hierarchical temporal organisa-
tion in complex rhythmic structures.

2. ERRORS IN BEAT TRACKING

Beat tracking or foot-tapping has a long history [7, 19],
spurred on by the demands of music information retrieval
[8,15,22,23]. Common methods of beat tracking involve
extraction of a mid-level representation, or onset detec-
tion function [23], typically derived from the spectral flux,
thereby avoiding the requirement of identifying each indi-
vidual onset. A number of methods have been proposed to
then determine a time varying frequency analysis of the
onset detection function, including comb filterbanks [6,
15, 23], autocorrelation [2, 9], dynamic time warping [8],
Bayesian estimation [3], combined frequency and time lag
analysis [22], coupled oscillators [17] and wavelet analy-
sis [4].

Despite reporting very good results, there are areas for
improvement to these approaches. A common task faced
by many of these approaches is selecting the appropriate
structural level from several viable candidates. It is a com-
mon occurance to select a beat rate which is twice as fast
as the actual performed rate, termed an “octave error”. For
many of these systems, a reselection of the correct struc-
tural level from the candidates would be possible if the oc-
tave error could be detected.

The concept of fastest pulse can be used as an indica-
tor of the highest structural level and therefore a datum.
This appears in terms of the fastest alternation of events.
Checking for quaver (1/8 note) alternation indicates if there
is evidence of the fastest pulse appearing at the expected
structural level, given the assumed tactus level. This pa-
per proposes a method to evaluate the beat tracking and
identify octave errors using an analysis of metrical pro-
files. This forms a combined feature vector of metrical
profile over separate spectral subbands, described in Sec-
tion 3. The behaviour of the metrical profile is analysed in



terms of quaver alternation to identify beat tracking which
has performed an octave error. This approach is evaluated
against an annotated dataset for beat tracking and tempo
estimation as described in Section 4. The results of eval-
uation against datasets of recorded music are reported in
Section 5.

3. METHOD

To identify the fastest pulse or tatum requires identifying
the higher level rhythmic structural levels. To do so, the
beat period (tactus) and metrical period (duration of the
bar) is computed from the audio signal of the musical ex-
ample using a beat-tracker, in this case as developed by
Peeters [22]. From the nominated beat times, a metrical
profile is computed.

3.1 Metrical Profile

The metrical profile, indicating the relative occurrence of
events in each metrical position within the measure, has
been demonstrated by [21] to represent metrical structure
and matches closely with listeners judgements of metrical
well-formedness. The metrical profile is computed from
the likelihood of an onset at each tatum (shortest temporal
interval) within a measure. The likelihood of onsets are
determined from the presence of onset detection function
(ODF) energy e described in [22]. The probability of an
onset o; at each tatum location ¢ is
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where ¢; is the mean energy of the ODF over the region of
the tatum ¢, € and o, are the mean and standard deviation
of the entire ODF energy respectively, € is a small value to
guard against zero €, and <y is a free parameter determin-
ing the maximum number of standard deviations above the
mean to assure an onset has occurred. By informal testing,
v = 2. The onset likelihoods are then used to create an
histogram my, for t = 1,...,n, of the relative amplitude
and occurrence at each tatum, by averaging each o; across
all M measures
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To normalise for varying tempo across each piece and
between pieces, the duration of each measure is derived
from the beat-tracker [22]. Using the beat locations iden-
tified by the beat-tracker, each beat duration is uniformly
subdivided into 1/64th notes (hemi-demi-semiquavers), that
is 0 < ¢t < 64 for a measure of a semibreve (whole note)
duration. Such a high subdivision attempts to categorise
swing timing occurring within the measure and to provide
sufficient resolution for accurate comparisons of metrical
structure. Using the tatum duration set to equal subdivi-
sions of each beat duration does not capture expressive tim-
ing occuring within that time period. However, the error
produced from this is minimal since the expressive timing
which modifies each beat and measure period is respected.

my =

Channel ¢ | Low band w. (Hz) | High band w/, (Hz)
1 60 106
2 106 186
3 186 327
4 327 575
5 575 1012
6 1012 1781
7 1781 3133
8 3133 5512

Table 1. Sub-band channel frequency ranges used to calcu-
late local spectrum onset detection functions in Equation 3.

The effect of this error is to blur the peak of each tatum
onset. The metrical profile is then downsampled (by local
averaging of 4 tatums) to semiquavers (1/16 notes).

3.2 Spectral Sub-band Profiles

Listeners categorise sounds using their individual spectral
character, and the identification of their reoccurance aids
rhythmic organisation. To distinguish the possibly com-
peting timing of different instruments and in order to match
categorization used by listeners, metrical profiles are sep-
arated by spectral energy. This is produced by computing
spectral sub-bands of the half wave rectified spectral en-
ergy. The sub-bands are computed by summing over non-
overlapping frequencies:

b,
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where F,; is the spectral flux for the sub-band channel
c¢=1,...,C attime ¢, over the spectral bands b = [w,, w/]
of the half-wave rectified spectral energy epw r(ws, t) at
frequency band w; computed as described by [22]. The
sub-band channels used are listed in Table 1 for C = 8.
These form logarithmically spaced spectral bands that ap-
proximate different time keeping functions in many forms
of music. A set of subband metrical profiles is then m,
fort=1,2,...,n,c=1,...,C.

3.3 Quaver Alternation

With the metrical profile reduced to semiquavers, a mea-
sure of the regularity of variation at the supposed qua-
ver period can be calculated. Since the tatums at strong
metrical locations are expected to vary strongly regard-
less of metrical level, only the variation for the sub-beats
falling at metrically weaker locations is used. For exam-
ple, in a : measure, n = 16, metrically strong semiqua-
vers are r = {1,5,9,13}. The subbeat vector of length S
is defined as s = r (At. Using the same example meter,
s=1{2,3,4,6,7,8,10,11,12,14,15,16}.

The average quaver alternation ¢ for a rhythm is the nor-
malised first order difference of subbeat profiles m/,
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Figure 1. Metrical profiles of an example from the RWC dataset
which was beat tracked with octave error. The top plot displays
a metrical profile of 16 semiquavers per measure for each of the
spectral subands (¢ = 1,...,8). The second, third and fourth
plots displays the subband metrical profiles created for half time,
half time counterphase and double time interpretations respec-
tively.

A low quaver alternation measure indicates that varia-
tion between adjacent sub-beat semiquavers is low. This
is most likely either in the case that there is little activity
in the music, or the structural level chosen as the quaver
is incorrect, i.e an octave error has occurred. To identify
the case of an octave error, the quaver alternation of the
metrical profile of a track is compared to metrical profiles
of the same track formed from half and double the number
of beats. The half tempo profile ¢ is formed from simply
skipping every second beat identified by the beat tracker.
A similar counter-phase half tempo profile ¢ is formed by
also skipping the initial beat. The double time profile g is
formed from sampling at onsets o, linearly bisecting each
original inter-beat interval.

Comparisons between metrical profiles of an example
rhythm is shown in Figure 1. The metrical pattern is dis-
played on the top plot, with n = 16 tatums per measure,
the C' = 8 subband profiles arranged adjacent in increasing
frequency band. On the lower plots, the patterns created by
assuming half tempo, half tempo counterphase, and dou-
ble tempo are displayed. It can be seen that the alternation
which occurs on the half tempo and half tempo counter-
phase plots is more regular than the original metrical pat-
tern or the double time pattern. This indicates that for this
example, an octave error has occurred.

A measure of octave error e is computed by comparing
the ratio of the half tempo quaver alternation to original
quaver alternation and the ratio of double tempo to original
quaver alternation,

e = m + g.

2¢ ¢

Equation 5 represents the degree that the alternation at
the half or double tempo exceeds the original quaver al-
ternation. Values of ‘%‘j > 1or g > 1 indicates there is
an octave error from either the double or half quaver alter-
nation being greater, but in practice, the threshold e > ¢’
needs to be higher. The threshold was determined exper-
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imentally as half a standard deviation above € as derived
from the RWC dataset at ¢’ = 3.34.

3.4 Reestimation of Tempo

The beat tracking for each piece which was nominated by
the algorithm as being an octave error is then recomputed
with the prior tempo estimate set to half the tempo first
computed. In the case of the Viterbi decoding of the beat
tracker used [22], this prior tempo estimate weights the
likely path of meter and tempo selection towards the half
rate. In this case, even if the prior tempo is set at half, it
is not guaranteed to be chosen as half the rate, if the orig-
inal tempo is a more likely path which outweighs the new
reestimation. This makes the beat tracker robust to false
positive classifications from the beat critic.

4. EVALUATION

Two evaluation strategies for octave errors are possible: 1)
evaluation of beat tracking, where the phase of the beat
tracking is correct, but the beat frequency is twice the true
rate and 2) evaluation of tempo alone, where the beat fre-
quency is twice the true rate and the phase of the beat track-
ing is not assessed. These two evaluations meet different
needs, the former if beat tracking accuracy is required, the
latter if a correct median tempo measure is sufficient.

To evaluate the discrimination of the algorithm, the com-
monly used RWC dataset was used [11]. This dataset con-
sists of 328 tracks in 5 sets (Classical, Jazz, Popular, “Genre”
and “Royalty Free”) annotated for beat times. A subset of
284 tracks was produced by eliminating pieces whose an-
notations were incorrect or incomplete in the RWC dataset. 2

Since the algorithm evaluates metrical profiles, this re-
quires meter changes to be accurately identified by the beat
tracker, which currently lacks that capability. Therefore
pieces with changing meters are expected to reduce the
performance of the algorithm. However since this would
have reduced the dataset further, and added beats or time
signature changes are common in many genres of music,
the dataset was used with these potential noise sources.

To evaluate octave error detection independent of the
quality of the beat tracking, pieces which were incorrectly
beat tracked were eliminated from the test set. This was
defined as a beat tracking F-score below 0.5 using a tem-
poral window of each annotated beat position within 15%
of each inter-beat interval [5,26]. A ground truth set of oc-
tave error examples was produced by comparing the ratio
of the beat tracking recall R to precision P measures, with:

é=|R/P+05], (6)

where é = 2 indicates an octave error. These ground truth
candidates were then manually auditioned to verify that
they were truly octave errors.

This produced a resulting dataset of 195 pieces, termed
“Good”, with 46 pieces identified as actually being beat
tracked at double time (an octave error). This formed the

2 For several of the Jazz examples and the Genre examples, only the
minim (half note) level was annotated.



Dataset | C. | True | S. | Prec. Rec. F
Good 30 46 | 55 | 0.545 | 0.652 | 0.594
Full 29 46 | 82 | 0.354 | 0.630 | 0.453

Table 2. Results of octave error detection by metrical pro-
file analysis (beat critic). “C.” indicates the number of
tracks correctly identified as an octave error, “True” as the
ground truth number of octave errors manually identified.
“S.” indicates the number of tracks selected as being an oc-
tave error. “Prec.”, “Rec.” and “F” indicates the precision,
recall and F-score measures respectively.

Pre-Reest. | Post-Reest.
Dataset | Meth. | Size | OE | NE | OE NE | %
Good BT 195 | 46 20 43
Good | BPM | 195 | 44 | 10 | 24 12 | 54
Full BT 284 | 63 37 58
Full BPM | 284 | 57 | 42 | 38 46 | 66

Table 3. Number of tracks with beat tracking octave er-
rors (OE) before (Pre) and after (Post) reestimation using
the beat critic. The column labelled “%” indicates the re-
duction in octave errors. NE columns indicates non-octave
errors.

ground truth to evaluate the octave error identification al-
gorithm. From these, standard precision, recall and F-score
measures can be computed [26]. The entire set of 284
pieces (termed “Full”) was also used to evaluate perfor-
mance when beat tracking does not perform optimally.

To determine the improvement the beat critic makes to
beat tracking, pieces which were determined to be beat
tracked with octave error were recomputed with half the
prior tempo. This would occur for false as well as true
positives. The beat tracker would then use the new weight-
ing towards the half tempo, but could produce the same
result as the original beat tracking if the Viterbi decoding
still biased towards the original tempo estimate [22].

The Good and Full datasets were also assessed for their
fidelity to the annotated median tempo measurement 7 of
each track. This was computed as 7 = 60/5, where i is
the median inter-beat interval in seconds. A beat tracked
tempo which was within 3% of the annotated tempo was
deemed a successful tempo estimation.

5. RESULTS

The results of evaluating the beat critic with the Good and
Full RWC datasets appear in Table 2. On the “Good”
dataset, while the critic is able to identify 65% of the pieces
with octave errors (the recall), it produces a sizeable num-
ber of false positives (the precision) which reduces the F-
score. As to be expected, with the “Full” dataset, the per-
formance is worse. The substantially higher number of
false positives for this dataset indicate that the octave er-
ror measure is sensitive to beat tracking error. As the al-
gorithm is defined, the measure of sub-beat alternation is

probably too reliant on the expectation that the beat is cor-
rectly tracked.

Despite the relatively low scoring results, Table 3 in-
dicates the success of the beat critic when used to rees-
timate the beat tracker. The column ‘“Meth.” describes
the method of evaluation, either “BT” for beat tracking,
comparing each beat location against annotated beats, or
“BPM”, comparing estimated tempo against annotated tempo.
“Size” describes the number of tracks in the dataset. “OE”
indicates the number of tracks that were beat tracked that
are evaluated to have been an octave error. “Pre” and “Post”
indicates the number of tracks before and after reestimat-
ing using the beat critic to bias prior tempo of the beat
tracker. “NE” indicates the number of tracks that were not
beat tracked correctly but were not octave errors. While it
is possible to identify non-octave errors with BPM evalu-
ation within a perceptually meaningful tolerance (3%, see
Section 4), this can not be defined properly when the mea-
sure of beat tracking is calculated in terms of precision,
recall and F-score.

In the case of the BT evaluation, the number of oc-
tave errors were reduced to 43% and 58% of the former
number of errors for the Good and Full datasets respec-
tively. This indicates that the Viterbi decoding of the beat
tracker has benefitted from reestimation and is reasonably
robust to the false positives identified as octave errors. The
tempo evaluation also showed similar improvements, re-
ducing octave errors to 54% and 66% (Good and Full). The
slight increase in non-octave errors after reestimation indi-
cates cases where the false positives have lead to mistrack-
ing. Depending on the application, this may be an unac-
ceptable deterioration in performance despite an increase
in the overall number of correctly tracked pieces.

6. CONCLUSIONS

A method for the detection of octave errors in beat track-
ing has been proposed and evaluated. The approach was
evaluated with an audio dataset that represents a variety of
genres of music. This approach, while currently applied
to only one beat tracker, depends only on the presence of a
mid-level representation, and the determination of beat and
meter periods, commonly produced by many beat trackers.
It is applicable to beat trackers which benefit from reesti-
mation or convergence in the selection of the beat tracking
frequency.

While the performance of the beat critic is well below
perfection, when applied to a beat tracker, it has been shown
to improve overall performance, reducing the number of
octave errors, at the cost of a slight increase in mistracking.
The beat critic’s applicability and usefulness is ultimately
dependent on the cost of false positives.

A number of improvements are possible. The use of
a threshold for the octave error classification is simplistic
and possibly difficult to set accurately. A machine learning
classifier promises to perform better in this task. However,
the best features to be used are not yet clear, preliminary
experiments with the quaver alternation measures ¢, ¢, ¢
and ¢ indicate that these are insufficient features to dis-



criminate the octave error classification. The alternative,
using the entire profiles, or reductions thereof, as features
produces too high a dimensionality for accurate learning.
Another issue is the relative computational cost of such an
approach, when the current threshold approach is compu-
tationally low. In principle the approach could be used
to identify beat tracking at half the correct rate, although
such beat tracking errors did not occur using the dataset
and therefore have not been evaluated.

The beat critic exploits knowledge of rhythmic behaviour
as represented in musicologically based models of metrical
profiles to compare temporal levels. The comparison of the
relative activity of levels is used to identify octave errors.
By examining the behaviour of events in the time domain,
the goal has been to circumvent limitations in the temporal
resolution of frequency based analysis in the identification
of beat levels.
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