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Today

■ Homework Evaluation

■ Application of Probability to Music research

■ A Gentle Introduction to Probability
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Who’s this bloke?
■ Researcher on the EmCAP project with Olivia and 

Henkjan.

■ http://www.science.uva.nl/~lsmith
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Music
Cognition

GroupEU Project: Emergent Cognition through 
Active Perception (EmCAP)

http://www.musiccognition.nl/EmCAP
4

• Neuroimaging innate vs. learned 
auditory functions.

• Perception of musical form.
• Prefrontal cortical function 

controlling attention and STM.
• Spectrotemporal response fields 

in the thalamocortical system.
• Perception and categorisation of 

rhythmic patterns.
• Active perception, relative pitch 

and emergence of tonality.
• Interactive music system: The 

Music Projector.

(European Commission FP6-IST, contract 013123)

■ The study of how cognitive 
behaviour in artificial systems can 
emerge through interacting with 
a musical environment.

http://www.musiccognition.nl/EmCAP
http://www.musiccognition.nl/EmCAP
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My Research
■ Computational modelling of rhythmic expectancy 

using wavelet analysis.
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Past Lives...
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...in infrared at Comp. Sci. robotics & 
vision lab at 

Uni. of Western Australia...

...with hair...



Music and Probability
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Music and Probability
■ Why consider the two disciplines together?

7

?



Composition

■ Historically, there is a long tradition of composers 
using chance and automation in composition.

■ For example: 
■ Guido d’Arezzo (1094) method of chant generation.

■ Serialism (Schoenberg, Webern, Berg, Babbitt, Carter) 
(1911).

■ W.A. Mozart's musical dice game (Musikalisches Würfelspiel, 
1787).
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John Cage
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John Cage
■ Drew on Eastern 

philosophy (Zen Buddism) 
as a compositional model.
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Iannis Xenakis
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Iannis Xenakis
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Iannis Xenakis

■ Used statistical distributions to 
describe larger scale musical 
forms, to decide the selection of 
each note.
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Iannis Xenakis

■ Used statistical distributions to 
describe larger scale musical 
forms, to decide the selection of 
each note.

■ “Formalised Music” Indiana 
University Press, 1971.
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Pithoprakta (1956)
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“Akrata” (1964-5)
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■ ST-X Ensemble conducted by C.Z. Bornstein 1996, 
Mode Records

“Akrata” (1964-5)
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Recent Applications
■ Computer composition (Hiller & Isaacson 1959).

■ Computer accompaniment (Winkler 1998).

■ Improving musician/software interaction (Rowe 
2001).

■ Computer collaboration in improvisation.
■ e.g. STEIM http://www.steim.nl

■ Musical games.

■ Music accompaniment to computer games.
■ Reacting to a dynamically changing game context.

■ Dance and Music interaction (e.g. Merce Cunningham).
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Music Analysis

■ Probabilistic models have been applied to various 
musical applications.

■ Common analyses:
■ Melody

■ Rhythm
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Gentle Introduction to 
Probability
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Gentle Introduction to 
Probability

■ Statistics: Allows characterising the behaviour of 
a process which is too difficult to completely 
measure, using observations.
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Gentle Introduction to 
Probability

■ Statistics: Allows characterising the behaviour of 
a process which is too difficult to completely 
measure, using observations.

■ Probability: Enables quantifying the confidence 
of a decision or conclusion.
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Examples of Uses

■ Coin/dice tossing: 
■ e.g Is the coin fair (balanced)?

■ Sampling for quality: 
■ e.g picking a bunch of fruit at the market, or products off an 

assembly line to assess the quality of many more.

■ Risk assessment: 
■ e.g financial speculation, medical diagnosis etc.

■ Interpretation of experimental results.
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Definition of probability:
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Definition of probability:

■ Likelihood (or certainty) of the occurrence of an 
event of a statistical experiment.
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Definition of probability:

■ Likelihood (or certainty) of the occurrence of an 
event of a statistical experiment.

■ Typically normalised:

■ Probability = 0 ⇒ will never occur (0% chance).

■ Probability = 1 ⇒ will always occur (100% chance).

■ Can be considered as percentage chance of 
occurrence.
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Probability Example
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Probability Example

■ What is the probability of a ‘3’ being tossed on a 
(fair) dice?
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Probability Example

■ What is the probability of a ‘3’ being tossed on a 
(fair) dice?

■ 6 faces, all different, all equally likely, ‘3’ is 1 choice 
of the 6.

■ Maths: Let X be the random variable representing 
the outcome of the dice toss.

■ P(X = 3) = 1/6.
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Prob. Example 2
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Prob. Example 2

■ What is the probability of a total of 12 being 
thrown on 2 dice?
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Prob. Example 2

■ What is the probability of a total of 12 being 
thrown on 2 dice?

■ 12 = ‘6’ & ‘6’

■ ⇒ 1 in 6 chance (first throw) and

■     1 in 6 chance (second throw)
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Prob. Example 2 cont.
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Prob. Example 2 cont.

■ The two throws (outcomes) are independent of 
each other.
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Prob. Example 2 cont.

■ The two throws (outcomes) are independent of 
each other.

■ AND (intersection ‘∩’) reduces the likelihood, 
hence we multiply the probabilities.

■ P(X = 6 ∩Y = 6) =  P(X = 6) × P(Y = 6) 

■ P(X = 6 ∩Y = 6) = 1/6 × 1/6 = 1/36

■ 1/36 = 2.77% likely.
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Prob. Example 3
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Prob. Example 3

■ What is the probability of a total of 9 being thrown 
on 2 dice?
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Prob. Example 3

■ What is the probability of a total of 9 being thrown 
on 2 dice?

■ 9  = ‘6’ & ‘3’ or ‘5’ & ‘4’ or ‘4’ & ‘5’ or ‘3’ & ‘6’

■ or (union ‘∪’) increases the likelihood, hence add.

■ P(X = 6 ∩ Y = 3) + P(X = 5 ∩ Y = 4) + ... = 1/9

■ “Approximately 11.11% likely”
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Probability Summary

■ Demonstrated how to make simple calculations of 
probability of event occurrence.

■ References:
■ Prob. & Statistics for Engineers & Scientists 8th Ed(Walpole, 

Myers & Myers 2006)

■ Music & Probability (Temperley 2007)
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Homework
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Vivace for Lute, A. Falckenhagen (1697-1761), trans. F. Noad



Markov Chains
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Markov Chains

■ Models the behaviour of sequences of events (i.e 
notes) that are dependent on the occurrence of 
previous events.
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Markov Chains

■ Models the behaviour of sequences of events (i.e 
notes) that are dependent on the occurrence of 
previous events.

■ Example: likelihood of words in a sentence, or 
notes in a melody.

■ First order Markov chain: Each note is dependent 
only on one immediately previous note.

■ Second order Markov chain: Each note is 
dependent on the previous two notes, etc.
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Melodic Markov Chains
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Melodic Markov Chains
■ A Markov chain is a system with n number of 

‘states’ S(0)...S(n), which can be scale degrees when 
modelling melody.
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Melodic Markov Chains
■ A Markov chain is a system with n number of 

‘states’ S(0)...S(n), which can be scale degrees when 
modelling melody.
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■ The state at each 
moment in time is 
specified as a 
probability in terms of 
the previous state.
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First Order Markov Chain
■ Represents likelihood of next states (notes) in a 

table (matrix):
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First Order Markov Chain
■ Represents likelihood of next states (notes) in a 
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Generative Markov Chains
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Generative Markov Chains

■ Now the probabilities of notes are encoded as a 
Markov chain.
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Generative Markov Chains

■ Now the probabilities of notes are encoded as a 
Markov chain.

■ The Markov chain can be used to generate new 
melodies which have the same statistical probability 
as the melodies analysed.

■ The Markov chain is used to generate a melody by 
deciding which next note to choose from all 
possible options with a random number generator.
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Markov Chain Demo

■ Example modified from David Cope’s “Experiments 
in Musical Creativity” project.
■ http://arts.ucsc.edu/faculty/cope/
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The Continuator

■ Markov melodic improviser (Pachet 2003):
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The Continuator

■ Markov melodic improviser (Pachet 2003):

29

Claude Barthelemy
and the Continuator



Rhythm Examples
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Rhythm Examples

■ Meter estimation: Determination of meter from 
onsets. (Temperley 2007)
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Rhythm Examples

■ Meter estimation: Determination of meter from 
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■ Tempo tracking: Automated following of the 
tempo in a performance containing expressive 
timing and tempo variations. (A. T. Cemgil and B. 
Kappen and P. Desain and H. Honing 2000)
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Rhythm Examples

■ Meter estimation: Determination of meter from 
onsets. (Temperley 2007)

■ Tempo tracking: Automated following of the 
tempo in a performance containing expressive 
timing and tempo variations. (A. T. Cemgil and B. 
Kappen and P. Desain and H. Honing 2000)

■ Uses Bayesian probabilistic models.
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Palmer & Krumhansl
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Palmer & Krumhansl
■ Palmer and Krumhansl (1990) experimentally derived 

metrical hierarchy:

■ Following context beats, presented probe beats and judged for 
goodness of fit.
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Palmer & Krumhansl
■ Palmer and Krumhansl (1990) experimentally derived 

metrical hierarchy:

■ Following context beats, presented probe beats and judged for 
goodness of fit.

31

From Palmer & Krumhansl (1990). 
Mean goodness-of-fit ratings for 
musicians (solid line) and 
nonmusicians (dashed line).



Palmer & Krumhansl
■ P&K also determined frequency of occurrence of 

beat positions from composers scores:
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■ P&K also determined frequency of occurrence of 

beat positions from composers scores:
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Rhythmic Markov Models

■ Exercise: How would a rhythmic Markov chain be 
constructed? What would be an appropriate order?
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Assignment 
1) What is the most funky piece of music you know?

1) Bring it, and write down the artist, title, album and year of the piece.

2) Describe in a half A4, why you consider this piece funky, and what are the 
features that make it funky (i.e. rhythmical structure, sounds, instruments, 
timing, etc.)

2) Find two pieces of music, one that swings and one that doesn’t. The swinging 
song does not have to be a typical jazz song, any song with triplet 
subdivision as metrical grid will do (this is frequently referred to as shuffle 
as well).

1) Bring them, and write down the artist, title, album and year of the pieces.

2) Describe in a half A4 why the first song swings and the second doesn’t.

3) Read Honing & Haas (2008). It will help in doing question 2. Prepare 
questions to bring forward in class (N.B. These do not have to be sent in 
before-hand). 
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