# Music & Cognition

11/14

www.hum.uva.nl/mmm (see under 'Related Courses')

# Today

- Homework Evaluation
- Application of Probability to Music research
- A Gentle Introduction to Probability

#### Who's this bloke?

- Researcher on the EmCAP project with Olivia and Henkjan.
- http://www.science.uva.nl/~lsmith



(European Commission FP6-IST, contract 013123)

- The study of how cognitive behaviour in artificial systems can emerge through interacting with a musical environment.
- Neuroimaging innate vs. learned auditory functions.
- Perception of musical form.
- Prefrontal cortical function controlling attention and STM.
- Spectrotemporal response fields in the thalamocortical system.
- <u>Perception and categorisation of rhythmic patterns.</u>
- Active perception, relative pitch and emergence of tonality.
- Interactive music system: The Music Projector.





(European Commission FP6-IST, contract 013123)



- Neuroimaging innate vs. learned auditory functions.
- Perception of musical form.
- Prefrontal cortical function controlling attention and STM.
- Spectrotemporal response fields in the thalamocortical system.
- <u>Perception and categorisation of rhythmic patterns.</u>
- Active perception, relative pitch and emergence of tonality.
- Interactive music system: The Music Projector.





(European Commission FP6-IST, contract 013123)



- Neuroimaging innate vs. learned auditory functions.
- Perception of musical form.
- Prefrontal cortical function controlling attention and STM.
- Spectrotemporal response fields in the thalamocortical system.
- <u>Perception and categorisation of rhythmic patterns.</u>
- Active perception, relative pitch and emergence of tonality.
- Interactive music system: The Music Projector.





(European Commission FP6-IST, contract 013123)



- Neuroimaging innate vs. learned auditory functions.
- Perception of musical form.
- Prefrontal cortical function controlling attention and STM.
- Spectrotemporal response fields in the thalamocortical system.
- <u>Perception and categorisation of rhythmic patterns.</u>
- Active perception, relative pitch and emergence of tonality.
- Interactive music system: The Music Projector.



# My Research

Computational modelling of rhythmic expectancy using wavelet analysis.
"Greensleeves"



## Past Lives...



...with hair...

...in infrared at Comp. Sci. robotics & vision lab at Uni. of Western Australia...



# Music and Probability

# Music and Probability

Why consider the two disciplines together?



# Composition

- Historically, there is a long tradition of composers using chance and automation in composition.
- For example:
  - Guido d'Arezzo (1094) method of chant generation.
  - Serialism (Schoenberg, Webern, Berg, Babbitt, Carter) (1911).
  - W.A. Mozart's musical dice game (Musikalisches Würfelspiel, 1787).



Drew on Eastern philosophy (Zen Buddism) as a compositional model.



- Drew on Eastern philosophy (Zen Buddism) as a compositional model.
  - In his own words:



- Drew on Eastern philosophy (Zen Buddism) as a compositional model.
  - In his own words:
- Use of chance ("aleatoric") music.



- Drew on Eastern philosophy (Zen Buddism) as a compositional model.
  - In his own words:
- Use of chance ("aleatoric") music.
  - e.g used the I Ching for note selection.



- Drew on Eastern philosophy (Zen Buddism) as a compositional model.
  - In his own words:
- Use of chance ("aleatoric") music.
  - e.g used the I Ching for note selection.

Book I of Music of Changes, Herbert Henk, Wergo 1995



- Drew on Eastern philosophy (Zen Buddism) as a compositional model.
  - In his own words:
- Use of chance ("aleatoric") music.
  - e.g used the I Ching for note selection.

Book I of Music of Changes, Herbert Henk, Wergo 1995





 Used statistical distributions to describe larger scale musical forms, to decide the selection of each note.



- Used statistical distributions to describe larger scale musical forms, to decide the selection of each note.
- "Formalised Music" Indiana University Press, 1971.



# Pithoprakta (1956)



# "Akrata" (1964-5)

# "Akrata" (1964-5)

ST-X Ensemble conducted by C.Z. Bornstein 1996,
 Mode Records

## Recent Applications

- Computer composition (Hiller & Isaacson 1959).
- Computer accompaniment (Winkler 1998).
- Improving musician/software interaction (Rowe 2001).
- Computer collaboration in improvisation.
  - e.g. STEIM http://www.steim.nl
- Musical games.
- Music accompaniment to computer games.
  - Reacting to a dynamically changing game context.
- Dance and Music interaction (e.g. Merce Cunningham).

# Music Analysis

- Probabilistic models have been applied to various musical applications.
- Common analyses:
  - Melody
  - Rhythm

# Gentle Introduction to Probability

# Gentle Introduction to Probability

■ **Statistics**: Allows characterising the behaviour of a process which is too difficult to completely measure, using observations.

# Gentle Introduction to Probability

- Statistics: Allows characterising the behaviour of a process which is too difficult to completely measure, using observations.
- **Probability**: Enables quantifying the confidence of a decision or conclusion.

# Examples of Uses

#### Coin/dice tossing:

e.g Is the coin fair (balanced)?

#### Sampling for quality:

 e.g picking a bunch of fruit at the market, or products off an assembly line to assess the quality of many more.

#### Risk assessment:

- e.g financial speculation, medical diagnosis etc.
- Interpretation of experimental results.

 Likelihood (or certainty) of the occurrence of an event of a statistical experiment.

- Likelihood (or certainty) of the occurrence of an event of a statistical experiment.
- Typically normalised:
  - Probability =  $0 \Rightarrow$  will never occur (0% chance).
  - Probability =  $I \Rightarrow$  will always occur (100% chance).

- Likelihood (or certainty) of the occurrence of an event of a statistical experiment.
- Typically normalised:
  - Probability =  $0 \Rightarrow$  will never occur (0% chance).
  - Probability =  $I \Rightarrow$  will always occur (100% chance).
- Can be considered as percentage chance of occurrence.

What is the probability of a '3' being tossed on a (fair) dice?

- What is the probability of a '3' being tossed on a (fair) dice?
- 6 faces, all different, all equally likely, '3' is I choice of the 6.

- What is the probability of a '3' being tossed on a (fair) dice?
- 6 faces, all different, all equally likely, '3' is I choice of the 6.
- Maths: Let X be the random variable representing the outcome of the dice toss.

- What is the probability of a '3' being tossed on a (fair) dice?
- 6 faces, all different, all equally likely, '3' is I choice of the 6.
- Maths: Let X be the random variable representing the outcome of the dice toss.
- P(X = 3) = 1/6.

■ What is the probability of a total of 12 being thrown on 2 dice?

- What is the probability of a total of 12 being thrown on 2 dice?
- **1** 12 = '6' & '6'
  - $\Rightarrow$  I in 6 chance (first throw) **and**
  - I in 6 chance (second throw)

■ The two throws (outcomes) are independent of each other.

- The two throws (outcomes) are independent of each other.
- AND (intersection 'n') reduces the likelihood, hence we multiply the probabilities.

- The two throws (outcomes) are independent of each other.
- AND (intersection 'n') reduces the likelihood, hence we multiply the probabilities.
- $P(X = 6 \cap Y = 6) = P(X = 6) \times P(Y = 6)$

- The two throws (outcomes) are independent of each other.
- AND (intersection '∩') reduces the likelihood, hence we multiply the probabilities.
- $P(X = 6 \cap Y = 6) = P(X = 6) \times P(Y = 6)$
- $P(X = 6 \cap Y = 6) = 1/6 \times 1/6 = 1/36$

- The two throws (outcomes) are independent of each other.
- AND (intersection '∩') reduces the likelihood, hence we multiply the probabilities.
- $P(X = 6 \cap Y = 6) = P(X = 6) \times P(Y = 6)$
- $P(X = 6 \cap Y = 6) = 1/6 \times 1/6 = 1/36$
- $\blacksquare$  1/36 = 2.77% likely.

What is the probability of a total of 9 being thrown on 2 dice?

- What is the probability of a total of 9 being thrown on 2 dice?
- 9 = '6' & '3' or '5' & '4' or '4' & '5' or '3' & '6'

- What is the probability of a total of 9 being thrown on 2 dice?
- 9 = '6' & '3' or '5' & '4' or '4' & '5' or '3' & '6'
- or (union 'U') increases the likelihood, hence add.

- What is the probability of a total of 9 being thrown on 2 dice?
- 9 = '6' & '3' or '5' & '4' or '4' & '5' or '3' & '6'
- or (union 'U') increases the likelihood, hence add.
- $P(X = 6 \cap Y = 3) + P(X = 5 \cap Y = 4) + ... = 1/9$

- What is the probability of a total of 9 being thrown on 2 dice?
- 9 = '6' & '3' or '5' & '4' or '4' & '5' or '3' & '6'
- or (union 'U') increases the likelihood, hence add.
- $P(X = 6 \cap Y = 3) + P(X = 5 \cap Y = 4) + ... = 1/9$
- "Approximately 11.11% likely"

# Probability Summary

- Demonstrated how to make simple calculations of probability of event occurrence.
- References:
  - Prob. & Statistics for Engineers & Scientists 8th Ed(Walpole, Myers & Myers 2006)
  - Music & Probability (Temperley 2007)

#### Homework



Vivace for Lute, A. Falckenhagen (1697-1761), trans. F. Noad

Models the behaviour of sequences of events (i.e notes) that are dependent on the occurrence of previous events.

- Models the behaviour of sequences of events (i.e notes) that are dependent on the occurrence of previous events.
- Example: likelihood of words in a sentence, or notes in a melody.

- Models the behaviour of sequences of events (i.e notes) that are dependent on the occurrence of previous events.
- Example: likelihood of words in a sentence, or notes in a melody.
- First order Markov chain: Each note is dependent only on one immediately previous note.

- Models the behaviour of sequences of events (i.e notes) that are dependent on the occurrence of previous events.
- Example: likelihood of words in a sentence, or notes in a melody.
- First order Markov chain: Each note is dependent only on one immediately previous note.
- Second order Markov chain: Each note is dependent on the previous two notes, etc.

■ A Markov chain is a system with n number of 'states' S(0)...S(n), which can be scale degrees when modelling melody.

A Markov chain is a system with n number of 'states' S(0)...S(n), which can be scale degrees when

modelling melody.



■ A Markov chain is a system with n number of 'states' S(0)...S(n), which can be scale degrees when

modelling melody.

The state at each moment in time is specified as a probability in terms of the previous state.



#### First Order Markov Chain

Represents likelihood of next states (notes) in a table (matrix):

|   |     | 2   | 3   | 4        | 5   | 6   | 7   |
|---|-----|-----|-----|----------|-----|-----|-----|
|   | 0.1 | 0.3 | 0.1 | okani ja | 0.3 | 0.2 |     |
| 2 | 0.7 | 0.3 |     |          |     |     |     |
| 3 |     |     | 0.5 | 0.5      |     |     |     |
| 4 |     |     |     |          | 1.0 |     |     |
| 5 | 0.4 |     |     | 0.6      |     |     |     |
| 6 |     |     |     |          |     |     | 1.0 |
| 7 | 1.0 |     |     |          |     |     |     |

#### First Order Markov Chain

Represents likelihood of next states (notes) in a table (matrix):

|   |     | 2   | 3   | 4          | 5   | 6       | 7                                           |             |
|---|-----|-----|-----|------------|-----|---------|---------------------------------------------|-------------|
|   | 0.1 | 0.3 | 0.1 | Service 18 | 0.3 | 0.2     |                                             |             |
| 2 | 0.7 | 0.3 |     |            |     |         | Hypothetical Melod<br>First Order Markov Cl | lic<br>hain |
| 3 |     |     | 0.5 | 0.5        | a67 | a16     | a11                                         |             |
| 4 |     |     |     |            | 7   | _ a71   | a21<br>a12                                  |             |
| 5 | 0.4 |     |     | 0.6        |     | a51 a13 | 2                                           | a22         |
| 6 |     |     |     |            | 5   | a54     | 3                                           |             |
| 7 | 1.0 |     |     |            | a   | 45      | a34 a33                                     |             |

#### First Order Markov Chain

Represents likelihood of next states (notes) in a table (matrix):

|   |     | 2   | 3   | 4        | 5   | 6   | 7   |
|---|-----|-----|-----|----------|-----|-----|-----|
|   | 0.1 | 0.3 | 0.1 | okani ja | 0.3 | 0.2 |     |
| 2 | 0.7 | 0.3 |     |          |     |     |     |
| 3 |     |     | 0.5 | 0.5      |     |     |     |
| 4 |     |     |     |          | 1.0 |     |     |
| 5 | 0.4 |     |     | 0.6      |     |     |     |
| 6 |     |     |     |          |     |     | 1.0 |
| 7 | 1.0 |     |     |          |     |     |     |

### Generative Markov Chains

#### Generative Markov Chains

Now the probabilities of notes are encoded as a Markov chain.

#### Generative Markov Chains

- Now the probabilities of notes are encoded as a Markov chain.
- The Markov chain can be used to generate new melodies which have the same statistical probability as the melodies analysed.

### Generative Markov Chains

- Now the probabilities of notes are encoded as a Markov chain.
- The Markov chain can be used to generate new melodies which have the same statistical probability as the melodies analysed.
- The Markov chain is used to generate a melody by deciding which next note to choose from all possible options with a random number generator.

### Markov Chain Demo

- Example modified from David Cope's "Experiments in Musical Creativity" project.
  - http://arts.ucsc.edu/faculty/cope/

# The Continuator

Markov melodic improviser (Pachet 2003):

# The Continuator

■ Markov melodic improviser (Pachet 2003):

Claude Barthelemy and the Continuator

 Meter estimation: Determination of meter from onsets. (Temperley 2007)

- Meter estimation: Determination of meter from onsets. (Temperley 2007)
- Tempo tracking: Automated following of the tempo in a performance containing expressive timing and tempo variations. (A.T. Cemgil and B. Kappen and P. Desain and H. Honing 2000)

- Meter estimation: Determination of meter from onsets. (Temperley 2007)
- Tempo tracking: Automated following of the tempo in a performance containing expressive timing and tempo variations. (A.T. Cemgil and B. Kappen and P. Desain and H. Honing 2000)
- Uses Bayesian probabilistic models.

- Palmer and Krumhansl (1990) experimentally derived metrical hierarchy:
  - Following context beats, presented probe beats and judged for goodness of fit.

Palmer and Krumhansl (1990) experimentally derived metrical hierarchy:

Following context beats, presented probe beats and judged for

goodness of fit.

From Palmer & Krumhansl (1990). Mean goodness-of-fit ratings for musicians (solid line) and nonmusicians (dashed line).



P&K also determined frequency of occurrence of beat positions from composers scores:



P&K also determined frequency of occurrence of beat positions from composers scores:



From Palmer & Krumhansl (1990). Mean frequency counts (solid line) vs. theoretical metrical hierarchy (dashed line).

# Rhythmic Markov Models

Exercise: How would a rhythmic Markov chain be constructed? What would be an appropriate order?

# Assignment

- 1) What is the most funky piece of music you know?
  - 1) Bring it, and write down the artist, title, album and year of the piece.
  - 2) Describe in a half A4, why you consider this piece funky, and what are the features that make it funky (i.e. rhythmical structure, sounds, instruments, timing, etc.)
- 2) Find two pieces of music, one that swings and one that doesn't. The swinging song does not have to be a typical jazz song, any song with triplet subdivision as metrical grid will do (this is frequently referred to as shuffle as well).
  - $\overline{1}$ ) Bring them, and write down the artist, title, album and year of the pieces.
  - 2) Describe in a half A4 why the first song swings and the second doesn't.
- 3) Read Honing & Haas (2008). It will help in doing question 2. Prepare questions to bring forward in class (N.B. These do not have to be sent in before-hand).

#### References

- C. Palmer and C. L. Krumhansl. Mental representations for musical meter.
   Journal of Experimental Psychology Human Perception and Performance, 16(4):728–41, 1990.
- D. Temperley. Music and Probability. MIT Press, Cambridge, Mass, 2007.
- A. T. Cemgil, B. Kappen, P. Desain, and H. Honing. On tempo tracking: Tempogram representation and Kalman filtering. Journal of New Music Research, 29(4):259–73, 2000.
- F. Pachet. The continuator: Musical interaction with style. Journal of New Music Research, 32(3):333–41, 2003.
- L. Hiller and L. Isaacson. Experimental Music. McGraw-Hill, New York, 1959.
   Reprinted Greenwood Press 1979.
- T. Winkler. Composing Interactive Music: Techniques and Ideas Using Max. MIT Press, Cambridge, Mass, 1998. 350p
- I. Xenakis. Formalised Music. Indiana University Press, Bloomington, Ind, 1971.
   273p.
- J. Cage. Silence. Marion Boyars, 1961.

### References cont.

- L. Austin. An interview with John Cage and Lejaren Hiller. Computer Music Journal, 16(4):15–29, 1992.
- R. Rowe. Machine Musicianship. MIT Press, Cambridge, Mass, 2001. 399p.
- R. E. Walpole, R. H. Myers, and S. L. Myers. Probability and Statistics for Engineers and Scientists. Prentice Hall Inc, 8th edition, 2006.