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• Neuroimaging innate vs. learned 
auditory functions.

• Perception of musical form.
• Prefrontal cortical function 

controlling attention and STM.
• Spectrotemporal response fields 

in the thalamocortical system.
• Perception and categorisation of 

rhythmic patterns.
• Active perception, relative pitch 

and emergence of tonality.
• Interactive music system: The 

Music Projector.

(European Commission FP6-IST, contract 013123)

■ The study of how cognitive 
behaviour in artificial systems 
can emerge through interacting 
with a musical environment.
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temporal structure of the rhythm? 
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■How much information is actually within the rhythmic 
signal?
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temporal structure of the rhythm? 

or

■How much information is actually within the rhythmic 
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...some theories of musical rhythm...
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Rhythm
■ “...the systematic patterning of sound in terms of 

timing, accent, and grouping.” (Patel 2008 p.96)

■ (Not always periodic patterns)

■ Accent sources include: dynamics, melody, harmony, 
articulation, timbre, onset asynchrony etc.

■ Consists of hierarchical and figural (proximal) temporal 
structures.
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■ Meter is expressed in Western music as time-
signatures (4/4, 3/4 etc).

Subdivision of 4/4 (4 beats to the bar):
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■ Meter is expressed in Western music as time-
signatures (4/4, 3/4 etc).

Subdivision of 4/4 (4 beats to the bar):
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■ Musical rhythm can be considered as composed of a 
hierarchy of temporal levels or strata (Yeston 1976, 
Lerdahl & Jackendoff 1983, Clarke 1987, Jones & Boltz 1989).

From Jones 
& Boltz ‘89
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Hierarchical Grouping: Meter

■ Meters are argued to arise from the interaction 
between temporal levels (Yeston 1976).

■ Therefore a meter implies two frequencies: the pulse 
rate and the measure (“bar”) rate.

■ The tactus is considered as the most salient hierarchical 
level, consistent with the notated meter, or the foot 
tapping rate (Desain & Honing 1994).

7



Music
Cognition

Group

Active Rhythm Perception
• Viewed as a resonance between top down and bottom-

up processes (see e.g Desain & Honing 1999):
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Model Requirements

■ Accounts for multiple, overlapping, temporal 
contexts.

■ Multiple beat hypotheses. 

■ Identification of tactus.

■ Expressive timing (tempo rubato).
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Existing Rhythmic Models

■ Parsing metrical grammars (Longuet-Higgins and Lee 1982).

■ Forward projection of likelihood (Desain 1992).

■ Autocorrelation (Desain & Vos 1990, Brown 1993).

■ Oscillator bank entrainment (Toiviainen 1998, Large 1994, 
Ohya 1994, Miller, Scarborough & Jones 1989).

■ Auditory-Motor “Primal Sketch” (Todd 1994, Todd, O’Boyle & 
Lee 1999) from Sombrero filter banks.
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■ Rhythm models have often implicitly dealt with rhythm as 

composed of periodic components:
■ Consider each beat as a critical sample of the amplitude 

envelope, weighted by the peak amplitude.

■ The rhythm analysed is therefore a train of impulses, sampling 
the rectification of the auditory signal.
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■ The Short Term Fourier Transform has been 
traditionally used for analysis of time varying 
signals.

■ Example: Audio analysis...

Spectrogram (STFT)
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...the 
machine that 
goes ping...

■ The Short Term Fourier Transform has been 
traditionally used for analysis of time varying 
signals.

■ Example: Audio analysis...

Spectrogram (STFT)
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Short Term Fourier Transform
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(invertibly) a signal onto scaled and translated instances 
of a finite time “mother function” or “basis”.

-30 -15 15 30 a = 1

-1

1
Real

-30 -15 15 30

-1

1
Imaginary

-30 -15 15 30 a = 2

-1

1

-30 -15 15 30

-1

1

Wavelet time-frequency analysis

Ws(b, a) =
1√
a

∫ ∞

−∞
s(τ) · ḡ(
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Implementation

■ Implemented as a set of complex value bandpass filters in 
Fourier domain.

■ Scaling produces a “zooming” time window for each 
frequency “scale”.

■ Creates simultaneous time and frequency localisation 
close to the Heisenberg inequality.
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An isochronous pulse rhythmic signal:
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Example: Simple Rhythm
Scalogram and Phasogram of an isochronous pulse rhythmic signal:
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Example: Simple Rhythm
Scalogram and Phasogram of an isochronous pulse rhythmic signal:
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(Smith & Honing in press: Journal of Mathematics & Music 2008)
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in terms of time varying rhythmic frequencies.
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Wavelets for Rhythm
(Smith & Honing in press: Journal of Mathematics & Music 2008)

■ The CWT enables representation of temporal structure 
in terms of time varying rhythmic frequencies.

■ Produces magnitude and phase measures which reveal 
time-frequency ridges indicating the frequencies present 
in the input rhythm signal (collectively a skeleton, 
Tchamitchian & Torrésani ’92).
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Greensleeves
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GroupApplication:
Foot-tapping by reconstruction

■ Suppress all but the magnitude coefficients of the 
extracted tactus ridge.

■ Invert the reduced magnitude and original phase planes 
back to the time domain.

■ Produces a sinusoidal AM signal with an intact phase, and 
a period matching the foot-tap interval.

■ Nominating a starting beat and noting its phase, all other 
foot-taps are generated for the same phase value.
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Tapping to Greensleeves

■ The rhythm of “Greensleeves” with computed foot-tap...
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Tapping to Greensleeves

■ The rhythm of “Greensleeves” with computed foot-tap...
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Interpretation

■ CWT being an invertible transform, simply represents 
rhythm in the time-frequency domain.

■ Has no explicit model of rhythmic cognition ⇒
■ Indicates how much structure is in the rhythmic signal.

■ Metrical durations from CWT suggests that rhythmic 
strata (ridges) may act as (bottom-up) cues to a metrical 
interpretation.

■ Establishes a distinction between top-down expectation 
and bottom-up categorisation processes.
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Evaluation Data: Anthems
(Smith & Honing: ICoMCS 2007)

■ 105 National Anthems (Shaw & Coleman 1960).

■ Rhythms transcribed into interonset intervals (IOI), 
quarter-note & bar duration, anacrusis.

■ No melodic, intensity or expression accents.

■ Also used in analysis of rule-based systems of Longuet-
Higgins & Lee (1982, 1985, 1991) (Desain & Honing 
1999).

■ Limited to a maximum length of 82 seconds each.
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■ Ridge Presence: relative occurrence of a ridge (r) at each 

dilation scale (a), over the duration (B) of each rhythm.
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■ Ridge Presence: relative occurrence of a ridge (r) at each 

dilation scale (a), over the duration (B) of each rhythm.

31

■ Average Ridge Presence: relative frequency of occurrence 
of each ridge averaged across all rhythms of a given meter.

Pa =
B−1∑

b=0

r(Wb,a)
B

1
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Triple Meter
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Presence of Bar Ridges
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Evaluation

■ Decomposing the temporal structure of musical rhythms 
with CWT reveals durations of the notated beat and bar.

■ Stable over anthem database, exceptions probably due to 
lack of harmonic/melodic disambiguation.

■ Not simply statistical (only 33 anthems have any 
interonset-intervals of bar duration).
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Memory Based Tactus
■ Wavelet rhythm analysis is also applicable to continuous 

onset salience traces from auditory models (Coath et. al, to 
appear: Connection Science 2008).
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Memory Based Tactus

■ Uses lossy windowed integrator to amass tactus likelihood.

■ Invert the computed tactus and original phase plane back to 
the time domain. Creates single beat oscillation.

■ Singing examples of Dutch folk songs from the "Onder de 
Groene Linde" collection (Meertens Institute) using memory 
based derivation of tactus:

■ Example 1:

■ Example 2: ...Original + Accompaniment
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Expectation

■ Generates future expectation times given a performed 
rhythm.

■ Uses lossy windowed integrator to amass likelihood of 
projected time periods.

■ Weighted by absolute tempo constraints.

■ Uses CWT phase measures to correct the projected periods 
for phase at the edge of the time window.
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■ Example 3/4 rhythm (no accents)
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Further Work

■ Use of rhythmic phase that is available from the CWT to 
identify an anacrusis (upbeat).

■ Compare performance against larger datasets (e.g 
MIREX).

■ Derivation of causal multiresolution model combined 
with memory store for retrospection.
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