Multiresolution Representations of Musical Rhythm & Expectation

Leigh M. Smith

Universiteit van Amsterdam ILLC / Music Cognition Group

EU Project: Emergent Cognition through Active Perception (EmCAP)

(European Commission FP6-IST, contract 013123)

- The study of how cognitive behaviour in artificial systems can emerge through interacting with a musical environment.
- Neuroimaging innate vs. learned auditory functions.
- Perception of musical form.
- Prefrontal cortical function controlling attention and STM.
- Spectrotemporal response fields in the thalamocortical system.
- Perception and categorisation of rhythmic patterns.
- Active perception, relative pitch and emergence of tonality.
- Interactive music system: The Music Projector.

http://www.musiccognition.nl/EmCAP

EU Project: Emergent Cognition through Active Perception (EmCAP)

(European Commission FP6-IST, contract 013123)

- Neuroimaging innate vs. learned auditory functions.
- Perception of musical form.
- Prefrontal cortical function controlling attention and STM.
- Spectrotemporal response fields in the thalamocortical system.
- Perception and categorisation of rhythmic patterns.
- Active perception, relative pitch and emergence of tonality.
- Interactive music system: The Music Projector.

http://www.musiccognition.nl/EmCAP

EU Project: Emergent Cognition through Active Perception (EmCAP)

(European Commission FP6-IST, contract 013123)

- Neuroimaging innate vs. learned auditory functions.
- Perception of musical form.
- Prefrontal cortical function controlling attention and STM.
- Spectrotemporal response fields in the thalamocortical system.
- Perception and categorisation of rhythmic patterns.
- Active perception, relative pitch and emergence of tonality.
- Interactive music system: The Music Projector.

http://www.musiccognition.nl/EmCAP

Rhythmic Expectation

Question:

■ What contribution to expectation arises from the temporal structure of the rhythm?

or

■ How much information is actually within the rhythmic signal?

Rhythmic Expectation

Question:

■ What contribution to expectation arises from the temporal structure of the rhythm?

or

■ How much information is actually within the rhythmic signal?

...some theories of musical rhythm...

"...the systematic patterning of sound in terms of timing, accent, and grouping." (Patel 2008 p.96)

- "...the systematic patterning of sound in terms of timing, accent, and grouping." (Patel 2008 p.96)
 - (Not always periodic patterns)

- "...the systematic patterning of sound in terms of timing, accent, and grouping." (Patel 2008 p.96)
 - (Not always periodic patterns)
- Accent sources include: dynamics, melody, harmony, articulation, timbre, onset asynchrony etc.

- "...the systematic patterning of sound in terms of timing, accent, and grouping." (Patel 2008 p.96)
 - (Not always periodic patterns)
- Accent sources include: dynamics, melody, harmony, articulation, timbre, onset asynchrony etc.
- Consists of hierarchical and figural (proximal) temporal structures.

Meter

Meter is expressed in Western music as timesignatures (4/4, 3/4 etc).

Subdivision of 4/4 (4 beats to the bar):

Meter

Meter is expressed in Western music as timesignatures (4/4, 3/4 etc).

Subdivision of 4/4 (4 beats to the bar):

Rhythmic Strata

Musical rhythm can be considered as composed of a hierarchy of temporal levels or strata (Yeston 1976, Lerdahl & Jackendoff 1983, Clarke 1987, Jones & Boltz 1989).

Hierarchical Grouping: Meter

- Meters are argued to arise from the interaction between temporal levels (Yeston 1976).
- Therefore a meter implies two frequencies: the pulse rate and the measure ("bar") rate.
- The tactus is considered as the most salient hierarchical level, consistent with the notated meter, or the foot tapping rate (Desain & Honing 1994).

Active Rhythm Perception

 Viewed as a resonance between top down and bottomup processes (see e.g Desain & Honing 1999):

Model Requirements

- Accounts for multiple, overlapping, temporal contexts.
- Multiple beat hypotheses.
- Identification of tactus.
- Expressive timing (tempo rubato).

Existing Rhythmic Models

- Parsing metrical grammars (Longuet-Higgins and Lee 1982).
- Forward projection of likelihood (Desain 1992).
- Autocorrelation (Desain & Vos 1990, Brown 1993).
- Oscillator bank entrainment (Toiviainen 1998, Large 1994, Ohya 1994, Miller, Scarborough & Jones 1989).
- Auditory-Motor "Primal Sketch" (Todd 1994, Todd, O'Boyle & Lee 1999) from Sombrero filter banks.

Rhythm as a signal

- Rhythm models have often implicitly dealt with rhythm as composed of periodic components:
 - Consider each beat as a critical sample of the amplitude envelope, weighted by the peak amplitude.
 - The rhythm analysed is therefore a train of impulses, sampling the rectification of the auditory signal.

- The Short Term Fourier Transform has been traditionally used for analysis of time varying signals.
 - Example: Audio analysis...

- The Short Term Fourier Transform has been traditionally used for analysis of time varying signals.
 - Example: Audio analysis...

...the machine that goes ping...

Short Term Fourier Transform

$$W_s(b, a) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} s(\tau) \cdot \bar{g}(\frac{\tau - b}{a}) d\tau, \ a > 0$$
$$g(t) = e^{-t^2/2} \cdot e^{i\omega_0 t}$$

$$W_s(b, a) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} s(\tau) \cdot \bar{g}(\frac{\tau - b}{a}) d\tau, \ a > 0$$
$$g(t) = e^{-t^2/2} \cdot e^{i\omega_0 t}$$

$$W_s(b, a) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} s(\tau) \cdot \left(\overline{g} \left(\frac{\tau - b}{a} \right) \right) d\tau, \ a > 0$$
$$g(t) = e^{-t^2/2} \cdot e^{i\omega_0 t}$$

$$W_s(b, a) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} s(\tau) \cdot \left(\overline{g} \left(\frac{\tau - b}{a} \right) \right) d\tau, \ a > 0$$
$$g(t) = e^{-t^2/2} \cdot e^{i\omega_0 t}$$

Implementation

- Implemented as a set of complex value bandpass filters in Fourier domain.
- Scaling produces a "zooming" time window for each frequency "scale".
- Creates simultaneous time and frequency localisation close to the Heisenberg inequality.

Example: Simple Rhythm

An isochronous pulse rhythmic signal:

Example: Simple Rhythm

Scalogram and Phasogram of an isochronous pulse rhythmic signal:

Example: Simple Rhythm

Scalogram and Phasogram of an isochronous pulse rhythmic signal:

Example: Simple Rhythm

Scalogram and Phasogram of an isochronous pulse rhythmic signal:

Wavelets for Rhythm

(Smith & Honing in press: Journal of Mathematics & Music 2008)

Wavelets for Rhythm

(Smith & Honing in press: Journal of Mathematics & Music 2008)

 The CWT enables representation of temporal structure in terms of time varying rhythmic frequencies.

Wavelets for Rhythm

(Smith & Honing in press: Journal of Mathematics & Music 2008)

- The CWT enables representation of temporal structure in terms of time varying rhythmic frequencies.
- Produces magnitude and phase measures which reveal time-frequency ridges indicating the frequencies present in the input rhythm signal (collectively a skeleton, Tchamitchian & Torrésani '92).

Musical Example

■ The rhythm of "Greensleeves"...

Musical Example

■ The rhythm of "Greensleeves"...

Greensleeves

System Overview

Application: Foot-tapping by reconstruction

Application: Foot-tapping by reconstruction

 Suppress all but the magnitude coefficients of the extracted tactus ridge.

Application: Foot-tapping by reconstruction

- Suppress all but the magnitude coefficients of the extracted tactus ridge.
- Invert the reduced magnitude and original phase planes back to the time domain.

Application: Foot-tapping by reconstruction

- Suppress all but the magnitude coefficients of the extracted tactus ridge.
- Invert the reduced magnitude and original phase planes back to the time domain.
- Produces a sinusoidal AM signal with an intact phase, and a period matching the foot-tap interval.

Application: Foot-tapping by reconstruction

- Suppress all but the magnitude coefficients of the extracted tactus ridge.
- Invert the reduced magnitude and original phase planes back to the time domain.
- Produces a sinusoidal AM signal with an intact phase, and a period matching the foot-tap interval.
- Nominating a starting beat and noting its phase, all other foot-taps are generated for the same phase value.

Tapping to Greensleeves

■ The rhythm of "Greensleeves" with computed foot-tap...

Tapping to Greensleeves

■ The rhythm of "Greensleeves" with computed foot-tap...

 CWT being an invertible transform, simply represents rhythm in the time-frequency domain.

- CWT being an invertible transform, simply represents rhythm in the time-frequency domain.
- lacksquare Has no explicit model of rhythmic cognition \Rightarrow
 - Indicates how much structure is in the rhythmic signal.

- CWT being an invertible transform, simply represents rhythm in the time-frequency domain.
- lacktriangle Has no explicit model of rhythmic cognition \Rightarrow
 - Indicates how much structure is in the rhythmic signal.
- Metrical durations from CWT suggests that rhythmic strata (ridges) may act as (bottom-up) cues to a metrical interpretation.

- CWT being an invertible transform, simply represents rhythm in the time-frequency domain.
- lacktriangle Has no explicit model of rhythmic cognition \Rightarrow
 - Indicates how much structure is in the rhythmic signal.
- Metrical durations from CWT suggests that rhythmic strata (ridges) may act as (bottom-up) cues to a metrical interpretation.
- Establishes a distinction between top-down expectation and bottom-up categorisation processes.

Evaluation Data: Anthems

(Smith & Honing: ICoMCS 2007)

- I05 National Anthems (Shaw & Coleman 1960).
- Rhythms transcribed into interonset intervals (IOI), quarter-note & bar duration, anacrusis.
- No melodic, intensity or expression accents.
- Also used in analysis of rule-based systems of Longuet-Higgins & Lee (1982, 1985, 1991) (Desain & Honing 1999).
- Limited to a maximum length of 82 seconds each.

Example: America

Example: Tunisia

Ridge Presence

■ Ridge Presence: relative occurrence of a ridge (r) at each dilation scale (a), over the duration (B) of each rhythm.

Ridge Presence

Ridge Presence: relative occurrence of a ridge (r) at each dilation scale (a), over the duration (B) of each rhythm.

$$P_a = \sum_{b=0}^{B-1} \frac{r(W_{b,a})}{B}$$

Ridge Presence

■ Ridge Presence: relative occurrence of a ridge (r) at each dilation scale (a), over the duration (B) of each rhythm.

$$P_a = \sum_{b=0}^{B-1} \frac{r(W_{b,a})}{B}$$

Average Ridge Presence: relative frequency of occurrence of each ridge averaged across all rhythms of a given meter.

Average Ridge Presence

Average Ridge Presence

Average Ridge Presence

Triple Meter

Triple Meter

Presence of Bar Ridges

Evaluation

Evaluation

 Decomposing the temporal structure of musical rhythms with CWT reveals durations of the notated beat and bar.

Evaluation

- Decomposing the temporal structure of musical rhythms with CWT reveals durations of the notated beat and bar.
- Stable over anthem database, exceptions probably due to lack of harmonic/melodic disambiguation.

Evaluation

- Decomposing the temporal structure of musical rhythms with CWT reveals durations of the notated beat and bar.
- Stable over anthem database, exceptions probably due to lack of harmonic/melodic disambiguation.
- Not simply statistical (only 33 anthems have any interonset-intervals of bar duration).

Wavelet rhythm analysis is also applicable to continuous onset salience traces from auditory models (Coath et. al, to appear: Connection Science 2008).

Uses lossy windowed integrator to amass tactus likelihood.

- Uses lossy windowed integrator to amass tactus likelihood.
- Invert the computed tactus and original phase plane back to the time domain. Creates single beat oscillation.

- Uses lossy windowed integrator to amass tactus likelihood.
- Invert the computed tactus and original phase plane back to the time domain. Creates single beat oscillation.
- Singing examples of Dutch folk songs from the "Onder de Groene Linde" collection (Meertens Institute) using memory based derivation of tactus:

- Uses lossy windowed integrator to amass tactus likelihood.
- Invert the computed tactus and original phase plane back to the time domain. Creates single beat oscillation.
- Singing examples of Dutch folk songs from the "Onder de Groene Linde" collection (Meertens Institute) using memory based derivation of tactus:
- Example 1:

- Uses lossy windowed integrator to amass tactus likelihood.
- Invert the computed tactus and original phase plane back to the time domain. Creates single beat oscillation.
- Singing examples of Dutch folk songs from the "Onder de Groene Linde" collection (Meertens Institute) using memory based derivation of tactus:
- Example I: Original...

- Uses lossy windowed integrator to amass tactus likelihood.
- Invert the computed tactus and original phase plane back to the time domain. Creates single beat oscillation.
- Singing examples of Dutch folk songs from the "Onder de Groene Linde" collection (Meertens Institute) using memory based derivation of tactus:
- Example I: Original... ...

...Original + Accompaniment

- Uses lossy windowed integrator to amass tactus likelihood.
- Invert the computed tactus and original phase plane back to the time domain. Creates single beat oscillation.
- Singing examples of Dutch folk songs from the "Onder de Groene Linde" collection (Meertens Institute) using memory based derivation of tactus:
- Example I: Original... ...Original + Accompaniment
- Example 2: ...Original + Accompaniment

Expectation

- Generates future expectation times given a performed rhythm.
- Uses lossy windowed integrator to amass likelihood of projected time periods.
- Weighted by absolute tempo constraints.
- Uses CWT phase measures to correct the projected periods for phase at the edge of the time window.

Emerging Metrical Context

Example 3/4 rhythm (no accents)

Emerging Metrical Context

Example 3/4 rhythm (no accents)

Emerging Metrical Context

Further Work

Further Work

- Use of rhythmic phase that is available from the CWT to identify an anacrusis (upbeat).
- Compare performance against larger datasets (e.g. MIREX).
- Derivation of causal multiresolution model combined with memory store for retrospection.

http://www.hum.uva.nl/mmm

http://www.science.uva.nl/~lsmith